Skip to main content

Interpretable Neural Network Decoupling

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12360))

Included in the following conference series:

  • 3123 Accesses

Abstract

The remarkable performance of convolutional neural networks (CNNs) is entangled with their huge number of uninterpretable parameters, which has become the bottleneck limiting the exploitation of their full potential. Towards network interpretation, previous endeavors mainly resort to the single filter analysis, which however ignores the relationship between filters. In this paper, we propose a novel architecture decoupling method to interpret the network from a perspective of investigating its calculation paths. More specifically, we introduce a novel architecture controlling module in each layer to encode the network architecture by a vector. By maximizing the mutual information between the vectors and input images, the module is trained to select specific filters to distill a unique calculation path for each input. Furthermore, to improve the interpretability and compactness of the decoupled network, the output of each layer is encoded to align the architecture encoding vector with the constraint of sparsity regularization. Unlike conventional pixel-level or filter-level network interpretation methods, we propose a path-level analysis to explore the relationship between the combination of filter and semantic concepts, which is more suitable to interpret the working rationale of the decoupled network. Extensive experiments show that the decoupled network achieves several applications, i.e., network interpretation, network acceleration, and adversarial samples detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agakov, D.B.F.: The im algorithm: a variational approach to information maximization. In: NeurIPS (2004)

    Google Scholar 

  2. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: CVPR (2017)

    Google Scholar 

  3. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  4. Bolukbasi, T., Wang, J., Dekel, O., Saligrama, V.: Adaptive neural networks for efficient inference. In: ICML (2017)

    Google Scholar 

  5. Chen, R., Chen, H., Huang, G., Ren, J., Zhang, Q.: Explaining neural networks semantically and quantitatively. In: ICCV (2019)

    Google Scholar 

  6. Chen, Z., Li, Y., Bengio, S., Si, S.: You look twice: gaternet for dynamic filter selection in CNNS. In: CVPR (2019)

    Google Scholar 

  7. Dong, X., Huang, J., Yang, Y., Yan, S.: More is less: a more complicated network with less inference complexity. In: CVPR (2017)

    Google Scholar 

  8. Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks. In: CVPR (2016)

    Google Scholar 

  9. Figurnov, M., et al.: Spatially adaptive computation time for residual networks. In: CVPR (2017)

    Google Scholar 

  10. Fong, R., Vedaldi, A.: Net2vec: quantifying and explaining how concepts are encoded by filters in deep neural networks. In: CVPR (2018)

    Google Scholar 

  11. Gao, X., Zhao, Y., Dudziak, L., Mullins, R., Xu, C.Z.: Dynamic channel pruning: feature boosting and suppression. ICLR (2018)

    Google Scholar 

  12. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. ICLR (2015)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  14. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convolutional neural networks. IJCAI (2018)

    Google Scholar 

  15. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: ICCV (2017)

    Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. Int. Conf. Mach. Learn. (2015)

    Google Scholar 

  18. Kaiser, Ł., Bengio, S.: Can active memory replace attention? In: NeurIPS (2016)

    Google Scholar 

  19. Kaiser, Ł., et al.: Fast decoding in sequence models using discrete latent variables. ICML (2018)

    Google Scholar 

  20. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. ICML (2017)

    Google Scholar 

  21. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Tech. rep, Citeseer (2009)

    Google Scholar 

  22. Lakkaraju, H., Kamar, E., Caruana, R., Horvitz, E.: Identifying unknown unknowns in the open world: representations and policies for guided exploration. In: AAAI (2017)

    Google Scholar 

  23. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. ICLR (2016)

    Google Scholar 

  24. Liu, L., Deng, J.: Dynamic deep neural networks: optimizing accuracy-efficiency trade-offs by selective execution. In: AAAI (2018)

    Google Scholar 

  25. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: ICCV (2017)

    Google Scholar 

  26. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: NeurIPS (2017)

    Google Scholar 

  27. Maaten, L., Hinton, G., Visualizing data using t-SNE: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  28. Morcos, A.S., Barrett, D.G., Rabinowitz, N.C., Botvinick, M.: On the importance of single directions for generalization. ICLR (2018)

    Google Scholar 

  29. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning (2010)

    Google Scholar 

  30. Paszke, A., et al.: Automatic differentiation in pytorch. NeurIPS Workshop (2017)

    Google Scholar 

  31. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  33. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  34. Wang, J., Zhang, Z., Xie, C., Premachandran, V., Yuille, A.: Unsupervised learning of object semantic parts from internal states of cnns by population encoding. arXiv preprint arXiv:1511.06855 (2015)

  35. Wang, X., Yu, F., Dou, Z.Y., Darrell, T., Gonzalez, J.E.: Skipnet: learning dynamic routing in convolutional networks. In: ECCV (2018)

    Google Scholar 

  36. Wang, Y., Su, H., Zhang, B., Hu, X.: Interpret neural networks by identifying critical data routing paths. In: CVPR (2018)

    Google Scholar 

  37. Yiyou, S., Sathya N., R., Vikas, S.: Adaptive activation thresholding: dynamic routing type behavior for interpretability in convolutional neural networks. In: ICCV (2019)

    Google Scholar 

  38. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: NeurIPS (2014)

    Google Scholar 

  39. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. Int. Conf. Mach. Learn. Workshop (2015)

    Google Scholar 

  40. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  41. Zhang, Q., Nian Wu, Y., Zhu, S.C.: Interpretable convolutional neural networks. In: CVPR (2018)

    Google Scholar 

  42. Zhang, Q., Yang, Y., Wu, Y.N., Zhu, S.C.: Interpreting cnns via decision trees. In: CVPR (2019)

    Google Scholar 

  43. Zhuang, Z., et al.: Discrimination-aware channel pruning for deep neural networks. In: NeurIPS (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Nature Science Foundation of China (No. U1705262, No. 61772443, No. 61572410, No. 61802324 and No. 61702136), National Key R&D Program (No. 2017YFC0113000, and No. 2016Y FB1001503), Key R&D Program of Jiangxi Province (No. 20171ACH80022) and Natural Science Foundation of Guangdong Provice in China (No. 2019B1515120049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Ji .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5724 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2020). Interpretable Neural Network Decoupling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics