Skip to main content

Visual Compositional Learning for Human-Object Interaction Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12360))

Abstract

Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image. It is challenging because an enormous number of possible combinations of objects and verbs types forms a long-tail distribution. We devise a deep Visual Compositional Learning (VCL) framework, which is a simple yet efficient framework to effectively address this problem. VCL first decomposes an HOI representation into object and verb specific features, and then composes new interaction samples in the feature space via stitching the decomposed features. The integration of decomposition and composition enables VCL to share object and verb features among different HOI samples and images, and to generate new interaction samples and new types of HOI, and thus largely alleviates the long-tail distribution problem and benefits low-shot or zero-shot HOI detection. Extensive experiments demonstrate that the proposed VCL can effectively improve the generalization of HOI detection on HICO-DET and V-COCO and outperforms the recent state-of-the-art methods on HICO-DET. Code is available at https://github.com/zhihou7/VCL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alfassy, A., et al.: LaSo: label-set operations networks for multi-label few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6548–6557 (2019)

    Google Scholar 

  2. Azadi, S., Pathak, D., Ebrahimi, S., Darrell, T.: Compositional GAN: Learning conditional image composition. arXiv preprint arXiv:1807.07560 (2018)

  3. Bansal, A., Rambhatla, S.S., Shrivastava, A., Chellappa, R.: Detecting human-object interactions via functional generalization. arXiv preprint arXiv:1904.03181 (2019)

  4. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)

  5. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  6. Burgess, C.P., et al.: Monet: Unsupervised scene decomposition and representation. arXiv preprint arXiv:1901.11390 (2019)

  7. Chao, Y.W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 381–389. IEEE (2018)

    Google Scholar 

  8. Chao, Y.W., Wang, Z., He, Y., Wang, J., Deng, J.: HICO: a benchmark for recognizing human-object interactions in images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1017–1025 (2015)

    Google Scholar 

  9. Gao, C., Zou, Y., Huang, J.B.: iCAN: Instance-centric attention network for human-object interaction detection. arXiv preprint arXiv:1808.10437 (2018)

  10. Garnelo, M., Shanahan, M.: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Current Opin. Behav. Sci. 29, 17–23 (2019)

    Article  Google Scholar 

  11. Gupta, S., Malik, J.: Visual semantic role labeling. arXiv preprint arXiv:1505.04474 (2015)

  12. Gupta, T., Schwing, A., Hoiem, D.: No-frills human-object interaction detection: Factorization, appearance and layout encodings, and training techniques. arXiv preprint arXiv:1811.05967 (2018)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Higgins, I., et al.: beta-VAE: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017)

    Google Scholar 

  15. Higgins, I., et al.: Scan: Learning hierarchical compositional visual concepts. arXiv preprint arXiv:1707.03389 (2017)

  16. Hoffman, D.D., Richards, W.: Parts of recognition (1983)

    Google Scholar 

  17. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  Google Scholar 

  18. Kato, K., Li, Y., Gupta, A.: Compositional learning for human object interaction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 247–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_15

    Chapter  Google Scholar 

  19. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. 40 (2017)

    Google Scholar 

  20. Li, Y.L., et al.: Transferable interactiveness prior for human-object interaction detection. arXiv preprint arXiv:1811.08264 (2018)

  21. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  22. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)

    Google Scholar 

  23. Locatello, F., Bauer, S., Lucic, M., Gelly, S., Schölkopf, B., Bachem, O.: Challenging common assumptions in the unsupervised learning of disentangled representations. arXiv preprint arXiv:1811.12359 (2018)

  24. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51

    Chapter  Google Scholar 

  25. van den Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    Google Scholar 

  26. Peyre, J., Laptev, I., Schmid, C., Sivic, J.: Detecting unseen visual relations using analogies. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  27. Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.-C.: Learning human-object interactions by graph parsing neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 407–423. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_25

    Chapter  Google Scholar 

  28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  29. Shen, L., Yeung, S., Hoffman, J., Mori, G., Fei-Fei, L.: Scaling human-object interaction recognition through zero-shot learning. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1568–1576. IEEE (2018)

    Google Scholar 

  30. Spelke, E.S.: Principles of object perception. Cogn. Sci. 14(1), 29–56 (1990)

    Article  Google Scholar 

  31. Wan, B., Zhou, D., Liu, Y., Li, R., He, X.: Pose-aware multi-level feature network for human object interaction detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9469–9478 (2019)

    Google Scholar 

  32. Wang, T., et al.: Deep contextual attention for human-object interaction detection. arXiv preprint arXiv:1910.07721 (2019)

  33. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7278–7286 (2018)

    Google Scholar 

  34. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning–a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2251–2265 (2018)

    Article  Google Scholar 

  35. Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning-the good, the bad and the ugly. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4582–4591 (2017)

    Google Scholar 

  36. Xu, B., Wong, Y., Li, J., Zhao, Q., Kankanhalli, M.S.: Learning to detect human-object interactions with knowledge. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  37. Yang, X., Zhang, H., Cai, J.: Shuffle-then-assemble: learning object-agnostic visual relationship features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 38–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_3

    Chapter  Google Scholar 

  38. Zhou, P., Chi, M.: Relation parsing neural network for human-object interaction detection. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-QYZX-092), Guangdong Special Support Program (2016TX03X276), National Natural Science Foundation of China (U1813218, U1713208), Shenzhen Basic Research Program (JCYJ20170818164704758, CXB201104220032A), the Joint Lab of CAS-HK, Australian Research Council Projects (FL-170100117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1272 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, Z., Peng, X., Qiao, Y., Tao, D. (2020). Visual Compositional Learning for Human-Object Interaction Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics