Skip to main content

EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12360))

Included in the following conference series:

Abstract

In this paper, we aim at addressing two critical issues in the 3D detection task, including the exploitation of multiple sensors (namely LiDAR point cloud and camera image), as well as the inconsistency between the localization and classification confidence. To this end, we propose a novel fusion module to enhance the point features with semantic image features in a point-wise manner without any image annotations. Besides, a consistency enforcing loss is employed to explicitly encourage the consistency of both the localization and classification confidence. We design an end-to-end learnable framework named EPNet to integrate these two components. Extensive experiments on the KITTI and SUN-RGBD datasets demonstrate the superiority of EPNet over the state-of-the-art methods. Codes and models are available at: https://github.com/happinesslz/EPNet.

T. Huang and Z. Liu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  2. Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3D object proposals using stereo imagery for accurate object class detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1259–1272 (2017)

    Article  Google Scholar 

  3. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  4. Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point R-CNN. In: Proceedings of IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  5. Du, X., Ang, M.H., Karaman, S., Rus, D.: A general pipeline for 3D detection of vehicles. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3194–3200 (2018). https://doi.org/10.1109/ICRA.2018.8461232

  6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition

    Google Scholar 

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of International Conference on Machine Learning (2015)

    Google Scholar 

  9. Jiang, B., Luo, R., Mao, J., Xiao, T., Jiang, Y.: Acquisition of localization confidence for accurate object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 816–832. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_48

    Chapter  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  11. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal generation and object detection from view aggregation. In: IROS, pp. 1–8. IEEE (2018)

    Google Scholar 

  12. Ku, J., Pon, A.D., Waslander, S.L.: Monocular 3D object detection leveraging accurate proposals and shape reconstruction. In: CVPR (2019)

    Google Scholar 

  13. Lahoud, J., Ghanem, B.: 2D-driven 3D object detection in RGB-D images. In: Proceedings of IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  14. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  15. Li, B., Ouyang, W., Sheng, L., Zeng, X., Wang, X.: GS3D: an efficient 3D object detection framework for autonomous driving. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  16. Li, P., Chen, X., Shen, S.: Stereo R-CNN based 3D object detection for autonomous driving. In: CVPR (2019)

    Google Scholar 

  17. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3D object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  18. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 663–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_39

    Chapter  Google Scholar 

  19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  20. Liu, L., Lu, J., Xu, C., Tian, Q., Zhou, J.: Deep fitting degree scoring network for monocular 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1057–1066 (2019)

    Google Scholar 

  21. Liu, Z., Zhao, X., Huang, T., Hu, R., Zhou, Y., Bai, X.: Tanet: robust 3D object detection from point clouds with triple attention. In: AAAI, pp. 11677–11684 (2020)

    Google Scholar 

  22. Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  23. Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., Fan, X.: Accurate monocular object detection via color-embedded 3D reconstruction for autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  24. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  25. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3D bounding box estimation using deep learning and geometry. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  26. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3D object detection in point clouds. In: Proceedings of IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  27. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  28. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  29. Qin, Z., Wang, J., Lu, Y.: MonoGRNet: a geometric reasoning network for 3D object localization. In: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) (2019)

    Google Scholar 

  30. Ren, Z., Sudderth, E.B.: Three-dimensional object detection and layout prediction using clouds of oriented gradients. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  31. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  32. Simonelli, A., Bulò, S.R.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disentangling monocular 3D object detection. arXiv preprint arXiv:1905.12365 (2019)

  33. Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: a RGB-D scene understanding benchmark suite. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  34. Song, S., Xiao, J.: Deep sliding shapes for amodal 3D object detection in RGB-D images. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  35. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.: Pseudo-LIDAR from visual depth estimation: bridging the gap in 3D object detection for autonomous driving. In: CVPR (2019)

    Google Scholar 

  36. Xu, B., Chen, Z.: Multi-level fusion based 3D object detection from monocular images. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  37. Xu, D., Anguelov, D., Jain, A.: PointFusion: deep sensor fusion for 3D bounding box estimation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  38. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  39. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  40. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: sparse-to-dense 3D object detector for point cloud. In: ICCV (2019). http://arxiv.org/abs/1907.10471

  41. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: UnitBox: an advanced object detection network. In: Proceedings of the 24th ACM International Conference on Multimedia (2016)

    Google Scholar 

  42. Zhao, X., Liu, Z., Hu, R., Huang, K.: 3D object detection using scale invariant and feature reweighting networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9267–9274 (2019)

    Google Scholar 

  43. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Key R&D Program of China (No. 2018YFB 1004600), Xiang Bai was supported by the National Program for Support of Top-notch Young Professionals and the Program for HUST Academic Frontier Youth Team 2017QYTD08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Bai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2207 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, T., Liu, Z., Chen, X., Bai, X. (2020). EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics