Skip to main content

Learn to Propagate Reliably on Noisy Affinity Graphs

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Recent works have shown that exploiting unlabeled data through label propagation can substantially reduce the labeling cost, which has been a critical issue in developing visual recognition models. Yet, how to propagate labels reliably, especially on a dataset with unknown outliers, remains an open question. Conventional methods such as linear diffusion lack the capability of handling complex graph structures and may perform poorly when the seeds are sparse. Latest methods based on graph neural networks would face difficulties on performance drop as they scale out to noisy graphs. To overcome these difficulties, we propose a new framework that allows labels to be propagated reliably on large-scale real-world data. This framework incorporates (1) a local graph neural network to predict accurately on varying local structures while maintaining high scalability, and (2) a confidence-based path scheduler that identifies outliers and moves forward the propagation frontier in a prudent way. Both components are learnable and closely coupled. Experiments on both ImageNet and Ms-Celeb-1M show that our confidence guided framework can significantly improve the overall accuracies of the propagated labels, especially when the graph is very noisy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(Nov), 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of graphs: unsupervised inductive learning via ranking. arXiv preprint arXiv:1707.03815 (2017)

  3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    Article  Google Scholar 

  4. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

  5. Cheng, H.T., et al.: Wide and deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Deng, J., Guo, J., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. arXiv preprint arXiv:1801.07698 (2018)

  8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  9. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  13. Huang, H., Zhang, Y., Huang, Q., Guo, Z., Liu, Z., Lin, D.: Placepedia: Comprehensive place understanding with multi-faceted annotations. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  14. Huang, Q., Liu, W., Lin, D.: Person search in videos with one portrait through visual and temporal links. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 425–441 (2018)

    Google Scholar 

  15. Huang, Q., Xiong, Y., Lin, D.: Unifying identification and context learning for person recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  16. Huang, Q., Xiong, Y., Rao, A., Wang, J., Lin, D.: MovieNet: a holistic dataset for movie understanding. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  17. Huang, Q., Xiong, Y., Xiong, Y., Zhang, Y., Lin, D.: From trailers to storylines: an efficient way to learn from movies. arXiv preprint arXiv:1806.05341 (2018)

  18. Huang, Q., Yang, L., Huang, H., Wu, T., Lin, D.: Caption-supervised face recognition: training a state-of-the-art face model without manual annotation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  19. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5070–5079 (2019)

    Google Scholar 

  20. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale. In: CVPR (2016)

    Google Scholar 

  21. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  22. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, pp. 6402–6413 (2017)

    Google Scholar 

  23. Lee, D.H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML. vol. 3, p. 2 (2013)

    Google Scholar 

  24. Noble, C.C., Cook, D.J.: Graph-based anomaly detection. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631–636 (2003)

    Google Scholar 

  25. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: Advances in Neural Information Processing Systems, pp. 3239–3250 (2018)

    Google Scholar 

  26. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  27. Qiu, H., Xiao, C., Yang, L., Yan, X., Lee, H., Li, B.: SemanticAdv: generating adversarial examples via attribute-conditional image editing. arXiv preprint arXiv:1906.07927 (2019)

  28. Rao, A., et al.: A unified framework for shot type classification based on subject centric lens. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  29. Rao, A., et al.: A local-to-global approach to multi-modal movie scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10146–10155 (2020)

    Google Scholar 

  30. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection models. WACV/MOTION 2 (2005)

    Google Scholar 

  31. Saunders, C., Gammerman, A., Vovk, V.: Transduction with confidence and credibility (1999)

    Google Scholar 

  32. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  33. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  34. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: NeurIPS (2014)

    Google Scholar 

  35. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  36. Vapnik, V.: 24 transductive inference and semi-supervised learning (2006)

    Google Scholar 

  37. Vashishth, S., Yadav, P., Bhandari, M., Talukdar, P.: Confidence-based graph convolutional networks for semi-supervised learning. arXiv preprint arXiv:1901.08255 (2019)

  38. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  39. Wu, F., Zhang, T., Souza Jr, A.H.D., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153 (2019)

  40. Wu, T., Huang, Q., Liu, Z., Wang, Y., Lin, D.: Distribution-balanced loss for multi-label classification in long-tailed datasets. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  41. Xia, J., Rao, A., Xu, L., Huang, Q., Wen, J., Lin, D.: Online multi-modal person search in videos. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  42. Xiong, Y., Huang, Q., Guo, L., Zhou, H., Zhou, B., Lin, D.: A graph-based framework to bridge movies and synopses. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  43. Yang, L., Chen, D., Zhan, X., Zhao, R., Loy, C.C., Lin, D.: Learning to cluster faces via confidence and connectivity estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  44. Yang, L., Zhan, X., Chen, D., Yan, J., Loy, C.C., Lin, D.: Learning to cluster faces on an affinity graph. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2298–2306 (2019)

    Google Scholar 

  45. Zhan, X., Liu, Z., Yan, J., Lin, D., Loy, C.C.: Consensus-driven propagation in massive unlabeled data for face recognition. In: ECCV (2018)

    Google Scholar 

  46. Zhang, X., Yang, L., Yan, J., Lin, D.: Accelerated training for massive classification via dynamic class selection. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  47. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, pp. 321–328 (2004)

    Google Scholar 

  48. Zhou, J., et al.: Graph neural networks: a review of methods and applications. arXiv preprint arXiv:1812.08434 (2018)

  49. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Technical report, Citeseer (2002)

    Google Scholar 

  50. Zhu, X.J.: Semi-supervised learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, Technical report (2005)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by the SenseTime Collaborative Grant on Large-scale Multi-modality Analysis (CUHK Agreement No. TS1610626 & No. TS1712093), the General Research Fund (GRF) of Hong Kong (No. 14203518 & No. 14205719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 210 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L., Huang, Q., Huang, H., Xu, L., Lin, D. (2020). Learn to Propagate Reliably on Noisy Affinity Graphs. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics