SSCGAN: Facial Attribute Editing via Style Skip Connections

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12360)


Existing facial attribute editing methods typically employ an encoder-decoder architecture where the attribute information is expressed as a conditional one-hot vector spatially concatenated with the image or intermediate feature maps. However, such operations only learn the local semantic mapping but ignore global facial statistics. In this work, we focus on solving this issue by editing the channel-wise global information denoted as the style feature. We develop a style skip connection based generative adversarial network, referred to as SSCGAN which enables accurate facial attribute manipulation. Specifically, we inject the target attribute information into multiple style skip connection paths between the encoder and decoder. Each connection extracts the style feature of the latent feature maps in the encoder and then performs a residual learning based mapping function in the global information space guided by the target attributes. In the following, the adjusted style feature will be utilized as the conditional information for instance normalization to transform the corresponding latent feature maps in the decoder. In addition, to avoid the vanishing of spatial details (e.g. hairstyle or pupil locations), we further introduce the skip connection based spatial information transfer module. Through the global-wise style and local-wise spatial information manipulation, the proposed method can produce better results in terms of attribute generation accuracy and image quality. Experimental results demonstrate the proposed algorithm performs favorably against the state-of-the-art methods.


Facial attribute editing Style feature Skip connection 


  1. 1.
    Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space? In: ICCV (2019)Google Scholar
  2. 2.
    Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML (2017)Google Scholar
  3. 3.
    Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: Towards open-set identity preserving face synthesis. In: CVPR (2018)Google Scholar
  4. 4.
    Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)Google Scholar
  5. 5.
    Chang, H., Lu, J., Yu, F., Finkelstein, A.: Pairedcyclegan: asymmetric style transfer for applying and removing makeup. In: CVPR (2018)Google Scholar
  6. 6.
    Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)Google Scholar
  7. 7.
    Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)Google Scholar
  8. 8.
    Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)Google Scholar
  9. 9.
    He, Z., Zuo, W., Kan, M., Shan, S., Chen, X.: AttGAN: facial attribute editing by only changing what you want. IEEE Trans. Image Process. 28(11), 5464–5478 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS, pp. 6626–6637 (2017)Google Scholar
  11. 11.
    Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)Google Scholar
  12. 12.
    Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception gan for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp. 2439–2448 (2017)Google Scholar
  13. 13.
    Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)Google Scholar
  14. 14.
    Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV (2018)Google Scholar
  15. 15.
    Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)Google Scholar
  16. 16.
    Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). Scholar
  17. 17.
    Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)Google Scholar
  18. 18.
    Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)Google Scholar
  19. 19.
    Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017)Google Scholar
  20. 20.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)Google Scholar
  21. 21.
    Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: ECCV (2018)Google Scholar
  22. 22.
    Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer (2017)Google Scholar
  23. 23.
    Liu, M., et al.: STGAN: a unified selective transfer network for arbitrary image attribute editing. In: CVPR (2019)Google Scholar
  24. 24.
    Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017)Google Scholar
  25. 25.
    Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: ICCV (2019)Google Scholar
  26. 26.
    Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)Google Scholar
  27. 27.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)zbMATHGoogle Scholar
  28. 28.
    Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
  29. 29.
    Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: ICML (2017)Google Scholar
  30. 30.
    Paszke, A., et al.: Automatic differentiation in PyTorch (2017)Google Scholar
  31. 31.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Perarnau, G., Van De Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. arXiv preprint arXiv:1611.06355 (2016)
  33. 33.
    Pumarola, A., Agudo, A., Martinez, A.M., Sanfeliu, A., Moreno-Noguer, F.: Ganimation: anatomically-aware facial animation from a single image. In: ECCV (2018)Google Scholar
  34. 34.
    Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANs for semantic face editing. arXiv preprint arXiv:1907.10786 (2019)
  35. 35.
    Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)Google Scholar
  36. 36.
    Wu, P.W., Lin, Y.J., Chang, C.H., Chang, E.Y., Liao, S.W.: ReLGAN: multi-domain image-to-image translation via relative attributes. In: ICCV (2019)Google Scholar
  37. 37.
    Xiao, T., Hong, J., Ma, J.: ELEGANT: exchanging latent encodings with GAN for transferring multiple face attributes. In: ECCV (2018)Google Scholar
  38. 38.
    Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. arXiv preprint arXiv:1905.08233 (2019)
  39. 39.
    Zhang, G., Kan, M., Shan, S., Chen, X.: Generative adversarial network with spatial attention for face attribute editing. In: ECCV (2018)Google Scholar
  40. 40.
    Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR (2018)Google Scholar
  41. 41.
    Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Youtu Lab TencentShanghaiChina
  2. 2.Xiamen UniversityXiamenChina

Personalised recommendations