Skip to main content

Object-Based Illumination Estimation with Rendering-Aware Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12360))

Abstract

We present a scheme for fast environment light estimation from the RGBD appearance of individual objects and their local image areas. Conventional inverse rendering is too computationally demanding for real-time applications, and the performance of purely learning-based techniques may be limited by the meager input data available from individual objects. To address these issues, we propose an approach that takes advantage of physical principles from inverse rendering to constrain the solution, while also utilizing neural networks to expedite the more computationally expensive portions of its processing, to increase robustness to noisy input data as well as to improve temporal and spatial stability. This results in a rendering-aware system that estimates the local illumination distribution at an object with high accuracy and in real time. With the estimated lighting, virtual objects can be rendered in AR scenarios with shading that is consistent to the real scene, leading to improved realism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org

  2. Azinovic, D., Li, T.M., Kaplanyan, A., Niessner, M.: Inverse path tracing for joint material and lighting estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  3. Barron, J.T., Malik, J.: Intrinsic scene properties from a single RGB-D image. In: CVPR, pp. 17–24. IEEE, June 2013. https://doi.org/10.1109/CVPR.2013.10

  4. Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1670–1687 (2015). http://ieeexplore.ieee.org/document/6975182/

  5. Calian, D.A., Lalonde, J.F., Gotardo, P., Simon, T., Matthews, I., Mitchell, K.: From faces to outdoor light probes. Comput. Graph. Forum 37, 51–61 (2018)

    Article  Google Scholar 

  6. Chaitanya, C.R.A., et al.: Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans. Graph. 36(4), 98:1–98:12 (2017)

    Article  Google Scholar 

  7. Cheng, D., Shi, J., Chen, Y., Deng, X., Zhang, X.: Learning scene illumination by pairwise photos from rear and front mobile cameras. In: Computer Graphics Forum (2018)

    Google Scholar 

  8. Choi, S., Zhou, Q.Y., Miller, S., Koltun, V.: A large dataset of object scans. arXiv:1602.02481 (2016)

  9. Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pp. 189–198. ACM, New York (1998)

    Google Scholar 

  10. Gardner, M.A., Hold-Geoffroy, Y., Sunkavalli, K., Gagne, C., Lalonde, J.F.: Deep parametric indoor lighting estimation. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  11. Gardner, M.A., et al.: Learning to predict indoor illumination from a single image. ACM Trans. Graph. 36(6), 1–14 (2017)

    Article  Google Scholar 

  12. Garon, M., Sunkavalli, K., Hadap, S., Carr, N., Lalonde, J.F.: Fast spatially-varying indoor lighting estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  13. Georgoulis, S., Rematas, K., Ritschel, T., Fritz, M., Tuytelaars, T., Gool, L.V.: What is around the camera? In: ICCV (2017)

    Google Scholar 

  14. Georgoulis, S., et al.: Reflectance and natural illumination from single-material specular objects using deep learning. PAMI 40, 1932–1947 (2017)

    Article  Google Scholar 

  15. Gruber, L., Langlotz, T., Sen, P., Höherer, T., Schmalstieg, D.: Efficient and robust radiance transfer for probeless photorealistic augmented reality. In: 2014 IEEE Virtual Reality (VR), pp. 15–20, March 2014

    Google Scholar 

  16. Gruber, L., Richter-Trummer, T., Schmalstieg, D.: Real-time photometric registration from arbitrary geometry. In: 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 119–128, November 2012

    Google Scholar 

  17. Hold-Geoffroy, Y., Athawale, A., Lalonde, J.F.: Deep sky modeling for single image outdoor lighting estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  18. Hold-Geoffroy, Y., Sunkavalli, K., Hadap, S., Gambaretto, E., Lalonde, J.F.: Deep outdoor illumination estimation. In: IEEE International Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  19. Huang, Y., Wang, W., Wang, L.: Bidirectional recurrent convolutional networks for multi-frame super-resolution. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  20. Jiddi, S., Robert, P., Marchand, E.: Illumination estimation using cast shadows for realistic augmented reality applications. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 192–193, October 2017

    Google Scholar 

  21. Karsch, K., et al.: Automatic scene inference for 3D object compositing. ACM Trans. Graph. 33(3), 32:1–32:15 (2014)

    Article  Google Scholar 

  22. Khan, E.A., Reinhard, E., Fleming, R.W., Bülthoff, H.H.: Image-based material editing. ACM Trans. Graph. 25(3), 654–663 (2006). https://doi.org/10.1145/1141911.1141937

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR, May 2015

    Google Scholar 

  24. Kronander, J., Banterle, F., Gardner, A., Miandji, E., Unger, J.: Photorealistic rendering of mixed reality scenes. Comput. Graph. Forum 34(2), 643–665 (2015)

    Article  Google Scholar 

  25. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 3DV (2016)

    Google Scholar 

  26. LeGendre, C., et al.: DeepLight: learning illumination for unconstrained mobile mixed reality. In: CVPR (2019)

    Google Scholar 

  27. LeGendre, C., et al.: Practical multispectral lighting reproduction. ACM Trans. Graph. 35(4), 32:1–32:11 (2016)

    Article  Google Scholar 

  28. Li, Z., Snavely, N.: CGintrinsics: better intrinsic image decomposition through physically-based rendering. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  29. Lombardi, S., Nishino, K.: Reflectance and illumination recovery in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 129–141 (2016). https://doi.org/10.1109/TPAMI.2015.2430318

    Article  Google Scholar 

  30. Nishino, K., Nayar, S.K.: Eyes for relighting. ACM Trans. Graph. 23(3), 704–711 (2004)

    Article  Google Scholar 

  31. Romeiro, F., Zickler, T.: Blind reflectometry. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 45–58. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_4

    Chapter  Google Scholar 

  32. Sato, I., Sato, Y., Ikeuchi, K.: Illumination from shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25(3), 290–300 (2003)

    Article  Google Scholar 

  33. Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D.W., Kautz, J.: Neural inverse rendering of an indoor scene from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8598–8607 (2019)

    Google Scholar 

  34. Sengupta, S., Kanazawa, A., Castillo, C.D., Jacobs, D.W.: SfSNet: learning shape, reflectance and illuminance of faces ‘in the wild’. In: CVPR (2018)

    Google Scholar 

  35. Song, S., Funkhouser, T.: Neural illumination: lighting prediction for indoor environments. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  36. Sun, T., et al.: Single image portrait relighting. ACM Trans. Graph. 38, 79-1 (2019)

    Google Scholar 

  37. Tewari, A., et al.: Self-supervised multi-level face model learning for monocular reconstruction at over 250 Hz. In: CVPR (2018)

    Google Scholar 

  38. Tewari, A., et al.: MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: ICCV (2017)

    Google Scholar 

  39. Unger, J., Gustavson, S., Ynnerman, A.: Densely sampled light probe sequences for spatially variant image based lighting. In: Proceedings of GRAPHITE, June 2006

    Google Scholar 

  40. Waese, J., Debevec, P.: A real-time high dynamic range light probe. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques: Conference Abstracts and Applications (2002)

    Google Scholar 

  41. Weber, H., Prévost, D., Lalonde, J.F.: Learning to estimate indoor lighting from 3D objects. In: 2018 International Conference on 3D Vision (3DV), pp. 199–207. IEEE (2018)

    Google Scholar 

  42. Wu, C., Wilburn, B., Matsushita, Y., Theobalt, C.: High-quality shape from multi-view stereo and shading under general illumination. In: CVPR (2011)

    Google Scholar 

  43. Yi, R., Zhu, C., Tan, P., Lin, S.: Faces as lighting probes via unsupervised deep highlight extraction. In: ECCV (2018)

    Google Scholar 

  44. Zhang, J., et al.: All-weather deep outdoor lighting estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  45. Zhou, H., Sun, J., Yacoob, Y., Jacobs, D.W.: Label denoising adversarial network (LDAN) for inverse lighting of faces. In: CVPR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Dong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 80784 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, X., Chen, G., Dong, Y., Lin, S., Tong, X. (2020). Object-Based Illumination Estimation with Rendering-Aware Neural Networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics