Skip to main content

Adaptive Computationally Efficient Network for Monocular 3D Hand Pose Estimation

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12349))

Included in the following conference series:

Abstract

3D hand pose estimation is an important task for a wide range of real-world applications. Existing works in this domain mainly focus on designing advanced algorithms to achieve high pose estimation accuracy. However, besides accuracy, the computation efficiency that affects the computation speed and power consumption is also crucial for real-world applications. In this paper, we investigate the problem of reducing the overall computation cost yet maintaining the high accuracy for 3D hand pose estimation from video sequences. A novel model, called Adaptive Computationally Efficient (ACE) network, is proposed, which takes advantage of a Gaussian kernel based Gate Module to dynamically switch the computation between a light model and a heavy network for feature extraction. Our model employs the light model to compute efficient features for most of the frames and invokes the heavy model only when necessary. Combined with the temporal context, the proposed model accurately estimates the 3D hand pose. We evaluate our model on two publicly available datasets, and achieve state-of-the-art performance at 22% of the computation cost compared to traditional temporal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Computed based on the public toolbox: PyTorch-OpCounter.

References

  1. Boukhayma, A., de Bem, R., Torr, P.H.: 3D hand shape and pose from images in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10843–10852 (2019)

    Google Scholar 

  2. Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3D hand pose estimation from monocular RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 678–694. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_41

    Chapter  Google Scholar 

  3. Cai, Y., et al.: Exploiting spatial-temporal relationships for 3d pose estimation via graph convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2272–2281 (2019)

    Google Scholar 

  4. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: Advances in Neural Information Processing Systems, pp. 3123–3131 (2015)

    Google Scholar 

  5. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or \(-\)1. arXiv preprint arXiv:1602.02830 (2016)

  6. Garcia-Hernando, G., Yuan, S., Baek, S., Kim, T.K.: First-person hand action benchmark with RGB-D videos and 3D hand pose annotations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 409–419 (2018)

    Google Scholar 

  7. Ge, L., Liang, H., Yuan, J., Thalmann, D.: Robust 3D hand pose estimation in single depth images: from single-view CNN to multi-view CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3593–3601 (2016)

    Google Scholar 

  8. Ge, L., Liang, H., Yuan, J., Thalmann, D.: 3D convolutional neural networks for efficient and robust hand pose estimation from single depth images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1991–2000 (2017)

    Google Scholar 

  9. Ge, L., Liang, H., Yuan, J., Thalmann, D.: Real-time 3D hand pose estimation with 3D convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 956–970 (2018)

    Article  Google Scholar 

  10. Ge, L., et al.: 3D hand shape and pose estimation from a single RGB image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10833–10842 (2019)

    Google Scholar 

  11. Gouidis, F., Panteleris, P., Oikonomidis, I., Argyros, A.: Accurate hand keypoint localization on mobile devices. In: 2019 16th International Conference on Machine Vision Applications (MVA), pp. 1–6. IEEE (2019)

    Google Scholar 

  12. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)

    Google Scholar 

  13. Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: optimal brain surgeon. In: Advances in Neural Information Processing Systems, pp. 164–171 (1993)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  16. Iqbal, U., Molchanov, P., Breuel, T., Gall, J., Kautz, J.: Hand pose estimation via latent 2.5D heatmap regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 125–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_8

    Chapter  Google Scholar 

  17. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  18. Korbar, B., Tran, D., Torresani, L.: SCSampler: sampling salient clips from video for efficient action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6232–6242 (2019)

    Google Scholar 

  19. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information Processing Systems, pp. 598–605 (1990)

    Google Scholar 

  20. Li, Z., Ni, B., Zhang, W., Yang, X., Gao, W.: Performance guaranteed network acceleration via high-order residual quantization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2584–2592 (2017)

    Google Scholar 

  21. Lin, M., Lin, L., Liang, X., Wang, K., Cheng, H.: Recurrent 3D pose sequence machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 810–819 (2017)

    Google Scholar 

  22. Liu, J., et al.: Feature boosting network for 3D pose estimation. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 494–501 (2020)

    Article  Google Scholar 

  23. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744 (2017)

    Google Scholar 

  24. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through \( l\_0 \) regularization. arXiv preprint arXiv:1712.01312 (2017)

  25. Malik, J., Elhayek, A., Nunnari, F., Varanasi, K., Tamaddon, K., Heloir, A., Stricker, D.: DeepHPS: end-to-end estimation of 3d hand pose and shape by learning from synthetic depth. In: 2018 International Conference on 3D Vision (3DV), pp. 110–119. IEEE (2018)

    Google Scholar 

  26. Mueller, F., et al.: Ganerated hands for real-time 3d hand tracking from monocular RGB. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 49–59 (2018)

    Google Scholar 

  27. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  28. Oculus: Hand tracking SDK for oculus quest available with v12 release. https://developer.oculus.com/blog/hand-tracking-sdk-for-oculus-quest-available

  29. Pan, B., Lin, W., Fang, X., Huang, C., Zhou, B., Lu, C.: Recurrent residual module for fast inference in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1536–1545 (2018)

    Google Scholar 

  30. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)

    Google Scholar 

  31. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  32. Hossain, M.R.I., Little, J.J.: Exploiting temporal information for 3D human pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 69–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_5

    Chapter  Google Scholar 

  33. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (ToG) 36(6), 245 (2017)

    Article  Google Scholar 

  34. Sinha, A., Choi, C., Ramani, K.: Deephand: robust hand pose estimation by completing a matrix imputed with deep features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4150–4158 (2016)

    Google Scholar 

  35. Tekin, B., Rozantsev, A., Lepetit, V., Fua, P.: Direct prediction of 3D body poses from motion compensated sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 991–1000 (2016)

    Google Scholar 

  36. Wan, C., Probst, T., Gool, L.V., Yao, A.: Self-supervised 3D hand pose estimation through training by fitting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10853–10862 (2019)

    Google Scholar 

  37. Wan, C., Probst, T., Van Gool, L., Yao, A.: Dense 3D regression for hand pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2018)

    Google Scholar 

  38. Wang, F., Wang, G., Huang, Y., Chu, H.: Sast: learning semantic action-aware spatial-temporal features for efficient action recognition. IEEE Access 7, 164876–164886 (2019)

    Article  Google Scholar 

  39. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems, pp. 2074–2082 (2016)

    Google Scholar 

  40. Wu, Z., Xiong, C., Jiang, Y.G., Davis, L.S.: LiteEval: a coarse-to-fine framework for resource efficient video recognition. In: Advances in Neural Information Processing Systems, pp. 7778–7787 (2019)

    Google Scholar 

  41. Wu, Z., Xiong, C., Ma, C.Y., Socher, R., Davis, L.S.: AdaFrame: adaptive frame selection for fast video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1278–1287 (2019)

    Google Scholar 

  42. Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: Posing face, body, and hands in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10965–10974 (2019)

    Google Scholar 

  43. Zhang, J., Jiao, J., Chen, M., Qu, L., Xu, X., Yang, Q.: 3D hand pose tracking and estimation using stereo matching. arXiv preprint arXiv:1610.07214 (2016)

  44. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  45. Zhang, X., Li, Q., Mo, H., Zhang, W., Zheng, W.: End-to-end hand mesh recovery from a monocular RGB image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2354–2364 (2019)

    Google Scholar 

  46. Zimmermann, C., Brox, T.: Learning to estimate 3D hand pose from single RGB images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4903–4911 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Institutes of Health under Grant R01CA214085 as well as SUTD Projects PIE-SGP-Al-2020-02 and SRG-ISTD-2020-153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 19311 KB)

Supplementary material 1 (pdf 127 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, Z., Liu, J., Wang, Y. (2020). Adaptive Computationally Efficient Network for Monocular 3D Hand Pose Estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58548-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58547-1

  • Online ISBN: 978-3-030-58548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics