Short-Term and Long-Term Context Aggregation Network for Video Inpainting

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12349)


Video inpainting aims to restore missing regions of a video and has many applications such as video editing and object removal. However, existing methods either suffer from inaccurate short-term context aggregation or rarely explore long-term frame information. In this work, we present a novel context aggregation network to effectively exploit both short-term and long-term frame information for video inpainting. In the encoding stage, we propose boundary-aware short-term context aggregation, which aligns and aggregates, from neighbor frames, local regions that are closely related to the boundary context of missing regions into the target frame (The target frame refers to the current input frame under inpainting.). Furthermore, we propose dynamic long-term context aggregation to globally refine the feature map generated in the encoding stage using long-term frame features, which are dynamically updated throughout the inpainting process. Experiments show that it outperforms state-of-the-art methods with better inpainting results and fast inpainting speed.


Video inpainting Context aggregation 



This research was supported by Australian Research Council Projects FL-170100117, IH-180100002, IC-190100031, LE-200100049.

Supplementary material (70.8 mb)
Supplementary material 1 (zip 72493 KB)


  1. 1.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)CrossRefGoogle Scholar
  2. 2.
    Bertalmio, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE Trans. Image Process. 12(8), 880–889 (2003)CrossRefGoogle Scholar
  3. 3.
    Chang, Y.L., Liu, Z.Y., Hsu, W.: Free-form video inpainting with 3D gated convolution and temporal patchgan. In: ICCV (2019)Google Scholar
  4. 4.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)CrossRefGoogle Scholar
  5. 5.
    Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)Google Scholar
  6. 6.
    Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)Google Scholar
  7. 7.
    Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Temporally coherent completion of dynamic video. ACM Trans. Graph. (TOG) 35(6), 196 (2016)Google Scholar
  8. 8.
    Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)CrossRefGoogle Scholar
  9. 9.
    Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)Google Scholar
  10. 10.
    Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV (2016)Google Scholar
  11. 11.
    Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Deep video inpainting. In: CVPR (2019)Google Scholar
  12. 12.
    Lai, W.S., Huang, J.B., Wang, O., Shechtman, E., Yumer, E., Yang, M.H.: Learning blind video temporal consistency. In: ECCV (2018)Google Scholar
  13. 13.
    Lee, S., Oh, S.W., Won, D., Kim, S.J.: Copy-and-paste networks for deep video inpainting. In: ICCV (2019)Google Scholar
  14. 14.
    Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: ECCV (2018)Google Scholar
  15. 15.
    Newson, A., Almansa, A., Fradet, M., Gousseau, Y., Pérez, P.: Video inpainting of complex scenes. SIAM J. Imaging Sci. 7(4), 1993–2019 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Oh, S.W., Lee, S., Lee, J.Y., Kim, S.J.: Onion-peel networks for deep video completion. In: ICCV (2019)Google Scholar
  17. 17.
    Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)Google Scholar
  18. 18.
    Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)Google Scholar
  19. 19.
    Sagong, M.C., Shin, Y.G., Kim, S.W., Park, S., Ko, S.J.: PEPSI: fast image inpainting with parallel decoding network. In: CVPR (2019)Google Scholar
  20. 20.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  21. 21.
    Wang, C., Huang, H., Han, X., Wang, J.: Video inpainting by jointly learning temporal structure and spatial details. In: AAAI (2019)Google Scholar
  22. 22.
    Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601 (2018)
  23. 23.
    Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)Google Scholar
  24. 24.
    Wexler, Y., Shechtman, E., Irani, M.: Space-time video completion. In: CVPR (2004)Google Scholar
  25. 25.
    Xiong, W., et al.: Foreground-aware image inpainting. In: CVPR (2019)Google Scholar
  26. 26.
    Xu, N., et al.: YouTube-VOS: sequence-to-sequence video object segmentation. In: ECCV (2018)Google Scholar
  27. 27.
    Xu, R., Li, X., Zhou, B., Loy, C.C.: Deep flow-guided video inpainting. In: CVPR (2019)Google Scholar
  28. 28.
    Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: CVPR (2017)Google Scholar
  29. 29.
    Yeh, R.A., Chen, C., Lim, T.Y., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: CVPR (2017)Google Scholar
  30. 30.
    Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: CVPR (2018)Google Scholar
  31. 31.
    Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network for high-quality image inpainting. In: CVPR (2019)Google Scholar
  32. 32.
    Zhang, H., Mai, L., Xu, N., Wang, Z., Collomosse, J., Jin, H.: An internal learning approach to video inpainting. In: CVPR (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Computing and Information SystemsThe University of MelbourneMelbourneAustralia
  2. 2.UBTECH Sydney AI Centre, School of Computer Science, Faculty of EngineeringThe University of SydneyDarlingtonAustralia
  3. 3.School of Information TechnologyDeakin UniversityGeelongAustralia
  4. 4.School of Mathematics and StatisticsThe University of MelbourneMelbourneAustralia

Personalised recommendations