Skip to main content

Learning to Factorize and Relight a City

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12349))

Included in the following conference series:

Abstract

We propose a learning-based framework for disentangling outdoor scenes into temporally-varying illumination and permanent scene factors. Inspired by the classic intrinsic image decomposition, our learning signal builds upon two insights: 1) combining the disentangled factors should reconstruct the original image, and 2) the permanent factors should stay constant across multiple temporal samples of the same scene. To facilitate training, we assemble a city-scale dataset of outdoor timelapse imagery from Google Street View, where the same locations are captured repeatedly through time. This data represents an unprecedented scale of spatio-temporal outdoor imagery. We show that our learned disentangled factors can be used to manipulate novel images in realistic ways, such as changing lighting effects and scene geometry. Please visit http://factorize-a-city.github.io/ for animated results.

“The city of Sophronia is made up of two half-cities... One

of the half-cities is permanent, the other is temporary.”

—Italo Calvino, Invisible Cities

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelson, E.H., Pentland, A.P.: The perception of shading and reflectance. In: Knill, D.C., Richards, W. (eds.) Perception as Bayesian Inference, pp. 409–423. Cambridge University Press, New York (1996)

    Chapter  Google Scholar 

  2. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Landy, M., Movshon, J.A. (eds.) Computational Models of Visual Processing, pp. 3–20. MIT Press, Cambridge (1991)

    Google Scholar 

  3. Arietta, S.M., Efros, A.A., Ramamoorthi, R., Agrawala, M.: City forensics: using visual elements to predict non-visual city attributes. IEEE Trans. Visual Comput. Graphics 20(12), 2624–2633 (2014). https://doi.org/10.1109/TVCG.2014.2346446

    Article  Google Scholar 

  4. Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. Trans. Pattern Anal. Mach. Intell. 37(8), 1670–1687 (2015)

    Article  Google Scholar 

  5. Barrow, H.G., Tenenbaum, J.M.: Recovering intrinsic scene characteristics from images. Comput. Vis. Syst. 2(3–26), 2 (1978)

    Google Scholar 

  6. Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. ACM Trans. Graphics (SIGGRAPH) 33(4), 159:1–159:12 (2014). https://doi.org/10.1145/2601097.2601206

    Article  Google Scholar 

  7. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019)

    Google Scholar 

  8. Klingner, B., Martin, D., Roseborough, J.: Street view motion-from-structure-from-motion. In: Proceedings of the International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  9. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes Paris look like Paris? ACM Trans. Graphics (SIGGRAPH) 31(4), 101:1–101:9 (2012)

    Article  Google Scholar 

  10. Gebru, T., et al.: Using deep learning and google street view to estimate the demographic makeup of neighborhoods across the United States. Proc. Natl. Acad. Sci. 114(50), 13108–13113 (2017). https://doi.org/10.1073/pnas.1700035114

    Article  Google Scholar 

  11. Gronat, P., Obozinski, G., Sivic, J., Pajdla, T.: Learning and calibrating per-location classifiers for visual place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013

    Google Scholar 

  12. Hold-Geoffroy, Y., Sunkavalli, K., Hadap, S., Gambaretto, E., Lalonde, J.F.: Deep outdoor illumination estimation. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  13. Huang, G.B., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex images. In: Proceedings of the International Conference on Computer Vision (ICCV) (2007)

    Google Scholar 

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  15. Jacobs, N., Roman, N., Pless, R.: Consistent temporal variations in many outdoor scenes. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 1–6, June 2007. https://doi.org/10.1109/CVPR.2007.383258

  16. Janner, M., Wu, J., Kulkarni, T.D., Yildirim, I., Tenenbaum, J.: Self-supervised intrinsic image decomposition. In: Neural Information Processing Systems, pp. 5936–5946. Curran Associates, Inc. (2017)

    Google Scholar 

  17. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  18. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 386–402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_23

    Chapter  Google Scholar 

  19. Laffont, P.Y., Bazin, J.C.: Intrinsic decomposition of image sequences from local temporal variations. In: Proceedings of the International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  20. Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays, J.: Transient attributes for high-level understanding and editing of outdoor scenes. ACM Trans. Graphics (SIGGRAPH) 33(4), 1–11 (2014)

    Article  Google Scholar 

  21. Lalonde, J.F., Efros, A.A., Narasimhan, S.G.: Webcam clip art: appearance and illuminant transfer from time-lapse sequences. ACM Trans. Graphics (SIGGRAPH) 28(5), 1–10 (2009)

    Article  Google Scholar 

  22. Lee, S., Maisonneuve, N., Crandall, D., Efros, A.A., Sivic, J.: Linking past to present: discovering style in two centuries of architecture. In: IEEE International Conference on Computational Photography (ICCP) (2015)

    Google Scholar 

  23. Li, Z., Snavely, N.: CGIntrinsics: better intrinsic image decomposition through physically-based rendering. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 381–399. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_23

    Chapter  Google Scholar 

  24. Li, Z., Snavely, N.: Learning intrinsic image decomposition from watching the world. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  25. Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse rendering for complex indoor scenes: shape, spatially-varying lighting and SVBRDF from a single image. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  26. Martin-Brualla, R., Gallup, D., Seitz, S.M.: Time-lapse mining from internet photos. ACM Trans. Graphics (SIGGRAPH) 34(4), 62:1–62:8 (2015). https://doi.org/10.1145/2766903

    Article  Google Scholar 

  27. Meshry, M., et al.: Neural rerendering in the wild. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  28. Naik, N., Philipoom, J., Raskar, R., Hidalgo, C.: Streetscore - predicting the perceived safety of one million streetscapes. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 793–799, June 2014. https://doi.org/10.1109/CVPRW.2014.121

  29. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  30. Philip, J., Gharbi, M., Zhou, T., Efros, A.A., Drettakis, G.: Multi-view relighting using a geometry-aware network. ACM Trans. Graphics (SIGGRAPH) 38(4) (2019). http://www-sop.inria.fr/reves/Basilic/2019/PGZED19

  31. Rubinstein, M., Liu, C., Sand, P., Durand, F., Freeman, W.T.: Motion denoising with application to time-lapse photography. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 313–320, June 2011

    Google Scholar 

  32. Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D.W., Kautz, J.: Neural inverse rendering of an indoor scene from a single image. In: Proceedings of the International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  33. Sengupta, S., Kanazawa, A., Castillo, C.D., Jacobs, D.W.: SfSNet: learning shape, reflectance and illuminance of faces in the wild. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  34. Sunkavalli, K., Matusik, W., Pfister, H., Rusinkiewicz, S.: Factored time-lapse video. ACM Trans. Graphics (SIGGRAPH) (2007). SIGGRAPH 2007. ACM, New York. https://doi.org/10.1145/1275808.1276504

  35. Vo, N.N., Hays, J.: Localizing and orienting street views using overhead imagery. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 494–509. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_30

    Chapter  Google Scholar 

  36. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  37. Weiss, Y.: Deriving intrinsic images from image sequences. In: Proceedings of the International Conference on Computer Vision (ICCV) (2001)

    Google Scholar 

  38. Yu, Y., Smith, W.A.: InverseRenderNet: learning single image inverse rendering. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  39. Zhou, T., Krähenbähl, P., Efros, A.A.: Learning data-driven reflectance priors for intrinsic image decomposition. In: Proceedings of the International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  40. Zhou, Y., Berg, T.L.: Learning temporal transformations from time-lapse videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 262–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_16

    Chapter  Google Scholar 

  41. Zhu, J.Y., et al.: Visual object networks: image generation with disentangled 3D representations. In: Neural Information Processing Systems (2018)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Richard Tucker, Richard Bowen, Ameesh Makadia, and Vincent Sitzmann for insightful discussions. We would also like to thank Angjoo Kanazawa and Tim Brooks for their help with preparing the manuscript. This work is supported, in part, by NSF grant IIS-1633310.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Liu , Shiry Ginosar , Alexei A. Efros or Noah Snavely .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 81817 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, A., Ginosar, S., Zhou, T., Efros, A.A., Snavely, N. (2020). Learning to Factorize and Relight a City. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58548-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58547-1

  • Online ISBN: 978-3-030-58548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics