Skip to main content

Transporting Labels via Hierarchical Optimal Transport for Semi-Supervised Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12349))

Included in the following conference series:

Abstract

Semi-Supervised Learning (SSL) based on Convolutional Neural Networks (CNNs) have recently been proven as powerful tools for standard tasks such as image classification when there is not a sufficient amount of labeled data available during the training. In this work, we consider the general setting of the SSL problem for image classification, where the labeled and unlabeled data come from the same underlying distribution. We propose a new SSL method that adopts a hierarchical Optimal Transport (OT) technique to find a mapping from empirical unlabeled measures to corresponding labeled measures by leveraging the minimum amount of transportation cost in the label space. Based on this mapping, pseudo-labels for the unlabeled data are inferred, which are then used along with the labeled data for training the CNN. We evaluated and compared our method with state-of-the-art SSL approaches on standard datasets to demonstrate the superiority of our SSL method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agueh, M., Carlier, G.: Barycenters in the wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011)

    Article  MathSciNet  Google Scholar 

  2. Álvarez-Esteban, P.C., del Barrio, E., Cuesta-Albertos, J., Matrán, C.: A fixed-point approach to barycenters in wasserstein space. J. Math. Anal. Appl. 441(2), 744–762 (2016)

    Article  MathSciNet  Google Scholar 

  3. Alvarez-Melis, D., Jaakkola, T., Jegelka, S.: Structured optimal transport. In: International Conference on Artificial Intelligence and Statistics, pp. 1771–1780 (2018)

    Google Scholar 

  4. Amari, S.: Information Geometry and Its Applications. AMS, vol. 194. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55978-8

    Book  MATH  Google Scholar 

  5. Amari, S., Karakida, R., Oizumi, M.: Information geometry connecting wasserstein distance and kullback–leibler divergence via the entropy-relaxed transportation problem. Inform. Geom. 1(1), 13–37 (2018). https://doi.org/10.1007/s41884-018-0002-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderes, E., Borgwardt, S., Miller, J.: Discrete wasserstein barycenters: optimal transport for discrete data. Math. Methods Oper. Res. 84(2), 389–409 (2016)

    Article  MathSciNet  Google Scholar 

  7. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)

  8. Athiwaratkun, B., Finzi, M., Izmailov, P., Wilson, A.G.: There are many consistent explanations of unlabeled data: why you should average. In: International Conference on Learning Representations (2019)

    Google Scholar 

  9. Bachman, P., Alsharif, O., Precup, D.: Learning with pseudo-ensembles. In: Advances in Neural Information Processing Systems, pp. 3365–3373 (2014)

    Google Scholar 

  10. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(Nov), 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization, vol. 6. Athena Scientific Belmont, MA (1997)

    Google Scholar 

  12. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning (chapelle, o. et al., eds.; 2006) [book reviews]. IEEE Trans. Neural Netw. 20(3), 542–542 (2009)

    Article  Google Scholar 

  13. Chapelle, O., Weston, J., Schölkopf, B.: Cluster kernels for semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 601–608 (2003)

    Google Scholar 

  14. Chen, Y., Ye, J., Li, J.: Aggregated wasserstein distance and state registration for hidden markov models. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)

    Google Scholar 

  15. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865 (2017)

    Article  Google Scholar 

  16. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

    Google Scholar 

  17. Cuturi, M., Doucet, A.: Fast computation of wasserstein barycenters. In: International Conference on Machine Learning, pp. 685–693 (2014)

    Google Scholar 

  18. Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: Deepjdot: deep joint distribution optimal transport for unsupervised domain adaptation. In: European Conference on Computer Vision, pp. 467–483. Springer (2018)

    Google Scholar 

  19. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  20. Dong-DongChen, W., WeiGao, Z.H.: Tri-net for semi-supervised deep learning. IJCAI (2018)

    Google Scholar 

  21. Frogner, C., Zhang, C., Mobahi, H., Araya, M., Poggio, T.A.: Learning with a wasserstein loss. In: Advances in Neural Information Processing Systems, pp. 2053–2061 (2015)

    Google Scholar 

  22. Genevay, A., Chizat, L., Bach, F., Cuturi, M., Peyré, G.: Sample complexity of sinkhorn divergences. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1574–1583 (2019)

    Google Scholar 

  23. Ho, N., Nguyen, X.L., Yurochkin, M., Bui, H.H., Huynh, V., Phung, D.: Multilevel clustering via wasserstein means. In: Proceedings of the 34th International Conference on Machine Learning, Vol. 70, pp. 1501–1509. JMLR. org (2017)

    Google Scholar 

  24. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5070–5079 (2019)

    Google Scholar 

  25. Jia, Y., Kwong, S., Hou, J.: Semi-supervised spectral clustering with structured sparsity regularization. IEEE Signal Process. Lett. 25(3), 403–407 (2018)

    Article  Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  27. Kolouri, S., Park, S.R., Thorpe, M., Slepcev, D., Rohde, G.K.: Optimal mass transport: signal processing and machine-learning applications. IEEE Signal Process. Mag. 34(4), 43–59 (2017)

    Article  Google Scholar 

  28. Kolouri, S., Zou, Y., Rohde, G.K.: Sliced wasserstein kernels for probability distributions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5258–5267 (2016)

    Google Scholar 

  29. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  31. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  32. Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced wasserstein discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10285–10295 (2019)

    Google Scholar 

  33. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, vol. 3, p. 2. ICML (2013)

    Google Scholar 

  34. Lee, J., Dabagia, M., Dyer, E., Rozell, C.: Hierarchical optimal transport for multimodal distribution alignment. In: Advances in Neural Information Processing Systems, pp. 13453–13463 (2019)

    Google Scholar 

  35. Liu, X., Van De Weijer, J., Bagdanov, A.D.: Exploiting unlabeled data in cnns by self-supervised learning to rank. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1862–1878 (2019)

    Article  Google Scholar 

  36. Luo, Y., Zhu, J., Li, M., Ren, Y., Zhang, B.: Smooth neighbors on teacher graphs for semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8896–8905 (2018)

    Google Scholar 

  37. Mi, L., Zhang, W., Gu, X., Wang, Y.: Variational wasserstein clustering. arXiv preprint arXiv:1806.09045 (2018)

  38. Miyato, T., Maeda, S., Ishii, S., Koyama, M.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  39. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 2011, p. 5 (2011)

    Google Scholar 

  40. Nguyen, X., et al.: Borrowing strengh in hierarchical bayes: posterior concentration of the dirichlet base measure. Bernoulli 22(3), 1535–1571 (2016)

    Article  MathSciNet  Google Scholar 

  41. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: Advances in Neural Information Processing Systems, pp. 3235–3246 (2018)

    Google Scholar 

  42. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548 (2017)

  43. Pollard, D.: Quantization and the method of k-means. IEEE Trans. Inform. Theory 28(2), 199–205 (1982)

    Article  MathSciNet  Google Scholar 

  44. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with ladder networks. In: Advances in Neural Information Processing Systems, pp. 3546–3554 (2015)

    Google Scholar 

  45. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 1163–1171 (2016)

    Google Scholar 

  46. Santambrogio, F.: Optimal transport for applied mathematicians. Birkauser NY 55, 58–63 (2015)

    MATH  Google Scholar 

  47. Schmitzer, B., Schnörr, C.: A hierarchical approach to optimal transport. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 452–464. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38267-3_38

    Chapter  Google Scholar 

  48. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  49. Shi, W., Gong, Y., Ding, C., MaXiaoyu Tao, Z., Zheng, N.: Transductive semi-supervised deep learning using min-max features. In: The European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  50. Solomon, J., et al.: Convolutional wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans. Graph. (TOG) 34(4), 66 (2015)

    Article  Google Scholar 

  51. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  52. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  53. Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business Media (2008)

    Google Scholar 

  54. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)

    Google Scholar 

  55. Vural, E., Guillemot, C.: A study of the classification of low-dimensional data with supervised manifold learning. J. Mach. Learn. Res. 18, 1–157 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  57. Yan, Y., Li, W., Wu, H., Min, H., Tan, M., Wu, Q.: Semi-supervised optimal transport for heterogeneous domain adaptation. In: IJCAI, pp. 2969–2975 (2018)

    Google Scholar 

  58. Ye, J., Wu, P., Wang, J.Z., Li, J.: Fast discrete distribution clustering using wasserstein barycenter with sparse support. IEEE Trans. Signal Process. 65(9), 2317–2332 (2017)

    Article  MathSciNet  Google Scholar 

  59. Yu, B., Wu, J., Ma, J., Zhu, Z.: Tangent-normal adversarial regularization for semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10676–10684 (2019)

    Google Scholar 

  60. Yurochkin, M., Claici, S., Chien, E., Mirzazadeh, F., Solomon, J.M.: Hierarchical optimal transport for document representation. In: Advances in Neural Information Processing Systems, pp. 1599–1609 (2019)

    Google Scholar 

  61. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, pp. 321–328 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariborz Taherkhani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taherkhani, F., Dabouei, A., Soleymani, S., Dawson, J., Nasrabadi, N.M. (2020). Transporting Labels via Hierarchical Optimal Transport for Semi-Supervised Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58548-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58547-1

  • Online ISBN: 978-3-030-58548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics