Skip to main content

Distribution-Balanced Loss for Multi-label Classification in Long-Tailed Datasets

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

We present a new loss function called Distribution-Balanced Loss for the multi-label recognition problems that exhibit long-tailed class distributions. Compared to conventional single-label classification problem, multi-label recognition problems are often more challenging due to two significant issues, namely the co-occurrence of labels and the dominance of negative labels (when treated as multiple binary classification problems). The Distribution-Balanced Loss tackles these issues through two key modifications to the standard binary cross-entropy loss: 1) a new way to re-balance the weights that takes into account the impact caused by label co-occurrence, and 2) a negative tolerant regularization to mitigate the over-suppression of negative labels. Experiments on both Pascal VOC and COCO show that the models trained with this new loss function achieve significant performance gains over existing methods. Code and models are available at: https://github.com/wutong16/DistributionBalancedLoss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  2. Byrd, J., Lipton, Z.C.: What is the effect of importance weighting in deep learning? arXiv preprint arXiv:1812.03372 (2018)

  3. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems (NIPS), pp. 1565–1576 (2019)

    Google Scholar 

  4. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5177–5186 (2019)

    Google Scholar 

  5. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Durand, T., Mehrasa, N., Mori, G.: Learning a deep ConvNet for multi-label classification with partial labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 647–657 (2019)

    Google Scholar 

  8. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. (IJCV) 111(1), 98–136 (2015)

    Article  Google Scholar 

  9. Goyal, P., et al.: Accurate, large minibatch SGD: training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  10. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  12. Horn, G.V., Perona, P.: The devil is in the tails: fine-grained classification in the wild. arXiv preprint arXiv:1709.01450 (2017)

  13. Huang, C., Li, Y., Change Loy, C., Tang, X.: Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5375–5384 (2016)

    Google Scholar 

  14. Huang, Q., Liu, W., Lin, D.: Person search in videos with one portrait through visual and temporal links. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 425–441 (2018)

    Google Scholar 

  15. Huang, Q., Xiong, Y., Rao, A., Wang, J., Lin, D.: MovieNet: a holistic dataset for movie understanding. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  16. Huang, Q., Yang, L., Huang, H., Wu, T., Lin, D.: Caption-supervised face recognition: training a state-of-the-art face model without manual annotation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  17. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intel. Data Anal. 6(5), 429–449 (2002)

    Article  Google Scholar 

  18. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  19. Khan, S., Hayat, M., Zamir, S.W., Shen, J., Shao, L.: Striking the right balance with uncertainty. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  20. Lee, C.W., Fang, W., Yeh, C.K., Frank Wang, Y.C.: Multi-label zero-shot learning with structured knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1576–1585 (2018)

    Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection (2017)

    Google Scholar 

  22. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  24. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  25. Liu, Z., et al.: Open compound domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  26. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  27. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 181–196 (2018)

    Google Scholar 

  28. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (NIPS), pp. 3111–3119 (2013)

    Google Scholar 

  29. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. arXiv preprint arXiv:1803.09050 (2018)

  30. Shen, L., Lin, Z., Huang, Q.: Relay backpropagation for effective learning of deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29

    Chapter  Google Scholar 

  31. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehouse. Min. (IJDWM) 3(3), 1–13 (2007)

    Article  Google Scholar 

  32. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: a unified framework for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2285–2294 (2016)

    Google Scholar 

  33. Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Advances in Neural Information Processing Systems (NIPS), pp. 7029–7039 (2017)

    Google Scholar 

  34. Wang, Z., Chen, T., Li, G., Xu, R., Lin, L.: Multi-label image recognition by recurrently discovering attentional regions (2017)

    Google Scholar 

  35. Xiong, Y., Huang, Q., Guo, L., Zhou, H., Zhou, B., Lin, D.: A graph-based framework to bridge movies and synopses. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  36. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the SenseTime Collaborative Grant on Large-scale Multi-modality Analysis (CUHK Agreement No. TS1610626 & No. TS1712093), the General Research Fund (GRF) of Hong Kong (No. 14236516 & No. 14203518), and Innovation and Technology Support Program (ITSP) Tier 2, ITS/431/18F. Correspondence to Ziwei Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1210 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, T., Huang, Q., Liu, Z., Wang, Y., Lin, D. (2020). Distribution-Balanced Loss for Multi-label Classification in Long-Tailed Datasets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58548-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58547-1

  • Online ISBN: 978-3-030-58548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics