Skip to main content

HALO: Hardware-Aware Learning to Optimize

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12354))

Included in the following conference series:

Abstract

There has been an explosive demand for bringing machine learning (ML) powered intelligence into numerous Internet-of-Things (IoT) devices. However, the effectiveness of such intelligent functionality requires in-situ continuous model adaptation for adapting to new data and environments, while the on-device computing and energy resources are usually extremely constrained. Neither traditional hand-crafted (e.g., SGD, Adagrad, and Adam) nor existing meta optimizers are specifically designed to meet those challenges, as the former requires tedious hyper-parameter tuning while the latter are often costly due to the meta algorithms’ own overhead. To this end, we propose hardware-aware learning to optimize (HALO), a practical meta optimizer dedicated to resource-efficient on-device adaptation. Our HALO optimizer features the following highlights: (1) faster adaptation speed (i.e., taking fewer data or iterations to reach a specified accuracy) by introducing a new regularizer to promote empirical generalization; and (2) lower per-iteration complexity, thanks to a stochastic structural sparsity regularizer being enforced. Furthermore, the optimizer itself is designed as a very light-weight RNN and thus incurs negligible overhead. Ablation studies and experiments on five datasets, six optimizees, and two state-of-the-art (SOTA) edge AI devices validate that, while always achieving a better accuracy (\(\uparrow \)0.46% - \(\uparrow \)20.28%), HALO can greatly trim down the energy cost (up to \(\downarrow \)60%) in adaptation, quantified using an IoT device or SOTA simulator. Codes and pre-trained models are at https://github.com/RICE-EIC/HALO.

The first two authors Chaojian Li and Tianlong Chen contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achille, A., Rovere, M., Soatto, S.: Critical learning periods in deep networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=BkeStsCcKQ

  2. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems, pp. 3981–3989 (2016)

    Google Scholar 

  3. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Esann (2013)

    Google Scholar 

  4. Ashqar, B.A., Abu-Naser, S.S.: Identifying images of invasive hydrangea using pre-trained deep convolutional neural networks. Int. J. Acad. Eng. Res. (IJAER) 3(3), 28–36 (2019)

    Google Scholar 

  5. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012)

    Google Scholar 

  6. Bippus, R., Fischer, A., Stahl, V.: Domain adaptation for robust automatic speech recognition in car environments. In: Sixth European Conference on Speech Communication and Technology (1999)

    Google Scholar 

  7. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp. 120–128 (2006)

    Google Scholar 

  8. Cao, Y., Chen, T., Wang, Z., Shen, Y.: Learning to optimize in swarms. In: Advances in Neural Information Processing Systems, vol. 32, pp. 15018–15028. Curran Associates, Inc. (2019). http://papers.nips.cc/paper/9641-learning-to-optimize-in-swarms.pdf

  9. Chen, H., Mahfuz, S., Zulkernine, F.: Smart phone based human activity recognition. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2525–2532. IEEE (2019)

    Google Scholar 

  10. Chen, Q., Liu, Y., Wang, Z., Wassell, I., Chetty, K.: Re-weighted adversarial adaptation network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7976–7985 (2018)

    Google Scholar 

  11. Chen, Y., et al.: Learning to learn without gradient descent by gradient descent. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 748–756. JMLR org (2017)

    Google Scholar 

  12. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Elibol, M., Lei, L., Jordan, M.I.: Variance reduction with sparse gradients (2020)

    Google Scholar 

  15. Fang, B., Zeng, X., Zhang, M.: Nestdnn: resource-aware multi-tenant on-device deep learning for continuous mobile vision. In: Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, pp. 115–127 (2018)

    Google Scholar 

  16. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning (2011)

    Google Scholar 

  17. Greff, K., Srivastava, R.K., Schmidhuber, J.: Highway and residual networks learn unrolled iterative estimation (2016). arXiv preprint arXiv:1612.07771

  18. Grothmann, T., Patt, A.: Adaptive capacity and human cognition: the process of individual adaptation to climate change. Glob. Environ. Change 15(3), 199–213 (2005)

    Article  Google Scholar 

  19. Habibzadeh, M., Jannesari, M., Rezaei, Z., Baharvand, H., Totonchi, M.: Automatic white blood cell classification using pre-trained deep learning models: Resnet and inception. In: Tenth International Conference on Machine Vision (ICMV 2017), vol. 10696, p. 1069612. International Society for Optics and Photonics (2018)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Comput. 9(1), 1–42 (1997)

    Article  Google Scholar 

  22. Hoffman, J., Roberts, D.A., Yaida, S.: Robust learning with Jacobian regularization (2019). arXiv preprint arXiv:1908.02729

  23. Hoffman, J., Rodner, E., Donahue, J., Darrell, T., Saenko, K.: Efficient learning of domain-invariant image representations (2013). arXiv preprint arXiv:1301.3224

  24. Hou, L., Zhu, J., Kwok, J., Gao, F., Qin, T., Liu, T.Y.: Normalization helps training of quantized LSTM. In: Advances in Neural Information Processing Systems, pp. 7344–7354 (2019)

    Google Scholar 

  25. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  26. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018. https://doi.org/10.1109/cvpr.2018.00286, http://dx.doi.org/10.1109/CVPR.2018.00286

  27. Keshamoni, K., Hemanth, S.: Smart gas level monitoring, booking and gas leakage detector over IoT. In: 2017 IEEE 7th International Advance Computing Conference (IACC), pp. 330–332. IEEE (2017)

    Google Scholar 

  28. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: Generalization gap and sharp minima (2016). arXiv preprint arXiv:1609.04836

  29. Kikui, K., Itoh, Y., Yamada, M., Sugiura, Y., Sugimoto, M.: Intra-/inter-user adaptation framework for wearable gesture sensing device. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 21–24 (2018)

    Google Scholar 

  30. Kikui, K., Itoh, Y., Yamada, M., Sugiura, Y., Sugimoto, M.: Intra-/inter-user adaptation framework for wearable gesture sensing device. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, New York, NY, USA. ISWC’2018, pp. 21–24, Association for Computing Machinery (2018). https://doi.org/10.1145/3267242.3267256

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  32. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  33. Lane, N.D., Bhattacharya, S., Mathur, A., Georgiev, P., Forlivesi, C., Kawsar, F.: Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Compu. 16(3), 82–88 (2017)

    Article  Google Scholar 

  34. LeCun, Y.: The mnist database of handwritten digits (1999). http://www.yann.lecun.com/exdb/mnist/

  35. Lee, J., et al.: Mems-based no 2 gas sensor using zno nano-rods for low-power IoT application. J. Korean Phys. Soc. 70(10), 924–928 (2017)

    Article  Google Scholar 

  36. Li, Y., Wei, C., Ma, T.: Towards explaining the regularization effect of initial large learning rate in training neural networks (2019). arXiv preprint arXiv:1907.04595

  37. Lin, Y., Sakr, C., Kim, Y., Shanbhag, N.: Predictivenet: an energy-efficient convolutional neural network via zero prediction. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2017)

    Google Scholar 

  38. Liu, C.H., Fan, J., Branch, J.W., Leung, K.K.: Toward qoi and energy-efficiency in internet-of-things sensory environments. IEEE Trans. Emerg. Top. Comput. 2(4), 473–487 (2014). https://doi.org/10.1109/TETC.2014.2364915

    Article  Google Scholar 

  39. Liu, S., Lin, Y., Zhou, Z., Nan, K., Liu, H., Du, J.: On-demand deep model compression for mobile devices: a usage-driven model selection framework. In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, pp. 389–400. ACM (2018)

    Google Scholar 

  40. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network pruning. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=rJlnB3C5Ym

  41. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2208–2217. ICML’2017, JMLR org (2017)

    Google Scholar 

  42. Lv, K., Jiang, S., Li, J.: Learning gradient descent: Better generalization and longer horizons. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2247–2255. JMLR org (2017)

    Google Scholar 

  43. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Briefings Bioinf. 19(6), 1236–1246 (2018)

    Article  Google Scholar 

  44. Moreno, M., Úbeda, B., Skarmeta, A.F., Zamora, M.A.: How can we tackle energy efficiency in iot basedsmart buildings? Sensors 14(6), 9582–9614 (2014)

    Article  Google Scholar 

  45. NVIDIA Inc.: NVIDIA Jetson TX2. https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/, Accessed 01 Sep 2019

  46. Park, K., Yi, Y.: Bpnet: branch-pruned conditional neural network for systematic time-accuracy tradeoff in dnn inference: work-in-progress. In: Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis Companion, pp. 1–2 (2019)

    Google Scholar 

  47. PARTICLE Inc.: PARTICLE LP103450. https://store.particle.io/products/li-po-battery, Accessed 29 Feb 2020

  48. Patrick Mochel and Mike Murphy.: sysfs-The filesystem for exporting kernel objects. https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt, Accessed 21 Nov 2019

  49. Peters, M., Ruder, S., Smith, N.A.: To tune or not to tune? adapting pretrained representations to diverse tasks (2019). arXiv preprint arXiv:1903.05987

  50. Petrolo, R., Lin, Y., Knightly, E.: Astro: autonomous, sensing, and tetherless networked drones. In: Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, New York, NY, USA. DroNet’2018, pp. 1–6. Association for Computing Machinery (2018). https://doi.org/10.1145/3213526.3213527

  51. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction (2011)

    Google Scholar 

  52. Sainath, T.N., Vinyals, O., Senior, A., Sak, H.: Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4580–4584, April 2015. https://doi.org/10.1109/ICASSP.2015.7178838

  53. SAMSUNG Inc.: SAMSUNG Galaxy S20. https://www.samsung.com/global/galaxy/galaxy-s20/specs/, Accessed 29 Feb 2020

  54. Sannino, G., Pietro, G.D.: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Gener. Comput. Syst. 86, 446–455 (2018). https://doi.org/10.1016/j.future.2018.03.057, http://www.sciencedirect.com/science/article/pii/S0167739X17324548

  55. Sharma, H., et al.: Bit fusion: bit-level dynamically composable architecture for accelerating deep neural network. In: 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), June 2018. https://doi.org/10.1109/isca.2018.00069, http://dx.doi.org/10.1109/ISCA.2018.00069

  56. Singh, K.J., Kapoor, D.S.: Create your own internet of things: A survey of iot platforms. IEEE Consum. Electron. Mag. 6(2), 57–68 (2017). https://doi.org/10.1109/MCE.2016.2640718

    Article  Google Scholar 

  57. Sokolić, J., Giryes, R., Sapiro, G., Rodrigues, M.R.: Robust large margin deep neural networks. IEEE Trans. Signal Process. 65(16), 4265–4280 (2017)

    Article  MathSciNet  Google Scholar 

  58. Subasi, A., Radhwan, M., Kurdi, R., Khateeb, K.: IoT based mobile healthcare system for human activity recognition. In: 2018 15th Learning and Technology Conference (L&T), pp. 29–34. IEEE (2018)

    Google Scholar 

  59. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  60. Texas Instruments Inc.: INA3221 Triple-Channel, High-Side Measurement, Shunt and Bus Voltage Monitor. http://www.ti.com/product/INA3221, Accessed 21 Nov 2019

  61. Upton, E., Halfacree, G.: Raspberry Pi User Guide. John Wiley & Sons, Hoboken (2014)

    Google Scholar 

  62. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift compensation using classifier ensembles. Sensors Actuators B: Chem. 166, 320–329 (2012)

    Article  Google Scholar 

  63. Wang, X., Yu, F., Dou, Z.Y., Darrell, T., Gonzalez, J.E.: Skipnet: Learning dynamic routing in convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 409–424 (2018)

    Google Scholar 

  64. Wang, Y., et al.: E2-train: training state-of-the-art CNNs with over 80% energy savings. In: Advances in Neural Information Processing Systems, pp. 5139–5151 (2019)

    Google Scholar 

  65. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems, pp. 2074–2082 (2016)

    Google Scholar 

  66. Wichrowska, O., et al.: Learned optimizers that scale and generalize. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3751–3760. JMLR org (2017)

    Google Scholar 

  67. Wu, Z., et al.: Blockdrop: Dynamic inference paths in residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8817–8826 (2018)

    Google Scholar 

  68. You, H., et al.: Drawing early-bird tickets: towards more efficient training of deep networks (2019)

    Google Scholar 

  69. Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? CoRR abs/1902.01996 (2019)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the National Science Foundation (NSF) through the Real-Time Machine Learning program (Award number: 1937592, 1937588).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhangyang Wang or Yingyan Lin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1941 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Chen, T., You, H., Wang, Z., Lin, Y. (2020). HALO: Hardware-Aware Learning to Optimize. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics