Advertisement

Sequential Convolution and Runge-Kutta Residual Architecture for Image Compressed Sensing

Conference paper
  • 872 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12354)

Abstract

In recent years, Deep Neural Networks (DNN) have empowered Compressed Sensing (CS) substantially and have achieved high reconstruction quality and speed far exceeding traditional CS methods. However, there are still lots of issues to be further explored before it can be practical enough. There are mainly two challenging problems in CS, one is to achieve efficient data sampling, and the other is to reconstruct images with high-quality. To address the two challenges, this paper proposes a novel Runge-Kutta Convolutional Compressed Sensing Network (RK-CCSNet). In the sensing stage, RK-CCSNet applies Sequential Convolutional Module (SCM) to gradually compact measurements through a series of convolution filters. In the reconstruction stage, RK-CCSNet establishes a novel Learned Runge-Kutta Block (LRKB) based on the famous Runge-Kutta methods, reformulating the process of image reconstruction as a discrete dynamical system. Finally, the implementation of RK-CCSNet achieves state-of-the-art performance on influential benchmarks with respect to prestigious baselines, and all the codes are available at https://github.com/rkteddy/RK-CCSNet.

Keywords

Compressed sensing Convolutional sensing Runge-Kutta methods 

Supplementary material

504446_1_En_14_MOESM1_ESM.pdf (515 kb)
Supplementary material 1 (pdf 514 KB)

References

  1. 1.
    Arbelaez, P., Maire, M., Fowlkes, C.C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)CrossRefGoogle Scholar
  2. 2.
    August, Y., Vachman, C., Rivenson, Y., Stern, A.: Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains. Appl. Opt. 52(10), D46–D54 (2013)CrossRefGoogle Scholar
  3. 3.
    Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C.R. Math. 346(9–10), 589–592 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Donoho, D.L., et al.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Du, J., Xie, X., Wang, C., Shi, G., Xu, X., Wang, Y.: Fully convolutional measurement network for compressive sensing image reconstruction. Neurocomputing 328, 105–112 (2019)CrossRefGoogle Scholar
  7. 7.
    Duarte, M.F., et al.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Weinan, E.: A proposal on machine learning via dynamical systems. Commun. Math. Stat. 5(1), 1–11 (2017).  https://doi.org/10.1007/s40304-017-0103-zMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gehm, M., John, R., Brady, D., Willett, R., Schulz, T.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15(21), 14013–14027 (2007)CrossRefGoogle Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 1026–1034. IEEE Computer Society (2015)Google Scholar
  11. 11.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016)Google Scholar
  12. 12.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46493-0_38CrossRefGoogle Scholar
  13. 13.
    Hitomi, Y., Gu, J., Gupta, M., Mitsunaga, T., Nayar, S.K.: Video from a single coded exposure photograph using a learned over-complete dictionary. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.V. (eds.) IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, 6–13 November 2011, pp. 287–294. IEEE Computer Society (2011)Google Scholar
  14. 14.
    Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23–26 August 2010, pp. 2366–2369 (2010)Google Scholar
  15. 15.
    Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 2261–2269. IEEE Computer Society (2017)Google Scholar
  16. 16.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)Google Scholar
  17. 17.
    Kulkarni, K., Lohit, S., Turaga, P.K., Kerviche, R., Ashok, A.: ReconNet: non-iterative reconstruction of images from compressively sensed measurements. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 449–458. IEEE Computer Society (2016)Google Scholar
  18. 18.
    Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, New York (1991)zbMATHGoogle Scholar
  19. 19.
    Li, C.: An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing. Master’s thesis, Rice University (2010)Google Scholar
  20. 20.
    Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 3282–3291. PMLR (2018)Google Scholar
  21. 21.
    Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72 (2008)CrossRefGoogle Scholar
  22. 22.
    Mousavi, A., Baraniuk, R.G.: Learning to invert: signal recovery via deep convolutional networks. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, 5–9 March 2017, pp. 2272–2276. IEEE (2017)Google Scholar
  23. 23.
    Mousavi, A., Dasarathy, G., Baraniuk, R.G.: A data-driven and distributed approach to sparse signal representation and recovery. In: International Conference on Learning Representations (2018)Google Scholar
  24. 24.
    Mousavi, A., Patel, A.B., Baraniuk, R.G.: A deep learning approach to structured signal recovery. In: 53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015, Allerton Park & Retreat Center, Monticello, IL, USA, 29 September–2 October 2015, pp. 1336–1343. IEEE (2015)Google Scholar
  25. 25.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation, pp. 318–362. MIT Press, Cambridge (1986)Google Scholar
  26. 26.
    Sauer, T.: Numerical Analysis, 2nd edn. Addison-Wesley Publishing Company, USA (2011)Google Scholar
  27. 27.
    Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)CrossRefGoogle Scholar
  28. 28.
    Shi, W., Jiang, F., Liu, S., Zhao, D.: Scalable convolutional neural network for image compressed sensing. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 12290–12299. Computer Vision Foundation/IEEE (2019)Google Scholar
  29. 29.
    Shi, W., Jiang, F., Liu, S., Zhao, D.: Image compressed sensing using convolutional neural network. IEEE Trans. Image Process. 29, 375–388 (2020)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shi, W., Jiang, F., Zhang, S., Zhao, D.: Deep networks for compressed image sensing. In: 2017 IEEE International Conference on Multimedia and Expo, ICME 2017, Hong Kong, China, 10–14 July 2017, pp. 877–882. IEEE Computer Society (2017)Google Scholar
  31. 31.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xu, K., Zhang, Z., Ren, F.: LAPRAN: a scalable laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 491–507. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01249-6_30CrossRefGoogle Scholar
  33. 33.
    Yao, H., Dai, F., Zhang, D., Ma, Y., Zhang, S., Zhang, Y.: DR2-net: deep residual reconstruction network for image compressive sensing. Neurocomputing 359, 483–493 (2017)CrossRefGoogle Scholar
  34. 34.
    Zhang, J., Zhao, D., Jiang, F., Gao, W.: Structural group sparse representation for image compressive sensing recovery. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.) 2013 Data Compression Conference, DCC 2013, Snowbird, UT, USA, 20–22 March 2013, pp. 331–340. IEEE (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceJinan UniversityGuangzhouChina
  2. 2.Guangzhou Xuanyuan Research Institute Company, Ltd.GuangzhouChina
  3. 3.Guangdong E-Tong Software Co., Ltd.GuangzhouChina

Personalised recommendations