Advertisement

Relative Pose Estimation of Calibrated Cameras with Known \(\mathrm {SE}(3)\) Invariants

Conference paper
  • 764 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12354)

Abstract

The \(\mathrm {SE}(3)\) invariants of a pose include its rotation angle and screw translation. In this paper, we present a complete comprehensive study of the relative pose estimation problem for a calibrated camera constrained by known \(\mathrm {SE}(3)\) invariant, which involves 5 minimal problems in total. These problems reduces the minimal number of point pairs for relative pose estimation and improves the estimation efficiency and robustness. The \(\mathrm {SE}(3)\) invariant constraints can come from extra sensor measurements or motion assumption. Unlike conventional relative pose estimation with extra constraints, no extrinsic calibration is required to transform the constraints to the camera frame. This advantage comes from the invariance of \(\mathrm {SE}(3)\) invariants cross different coordinate systems on a rigid body and makes the solvers more convenient and flexible in practical applications. In addition to the concept of relative pose estimation constrained by \(\mathrm {SE}(3)\) invariants, we also present a comprehensive study of existing polynomial formulations for relative pose estimation and discover their relationship. Different formulations are carefully chosen for each proposed problems to achieve best efficiency. Experiments on synthetic and real data shows performance improvement compared to conventional relative pose estimation methods. Our source code is available at: http://github.com/prclibo/relative_pose.

Notes

Acknowledgements

The work is supported in part by the Singapore MOE Tier 1 grant R-252-000-A65-114 and the Act 211 Government of the Russian Federation, contract No. 02.A03.21.0011.

Supplementary material

504446_1_En_13_MOESM1_ESM.pdf (181 kb)
Supplementary material 1 (pdf 180 KB)

References

  1. 1.
    Bonarini, A., Burgard, W., Fontana, G., Matteucci, M., Sorrenti, D.G., Tardos, J.D.: Rawseeds: robotics advancement through web-publishing of sensorial and elaborated extensive data sets. In: proceedings of IROS, vol. 6 (2006)Google Scholar
  2. 2.
    Chen, H.: A screw motion approach to uniqueness analysis of head-eye geometry. In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 145–151 (1991).  https://doi.org/10.1109/CVPR.1991.139677
  3. 3.
    Chirikjian, G.S.: Partial bi-invariance of SE(3) metrics 1. J. Comput. Inf. Sci. Eng. 15(1), 011008 (2014).  https://doi.org/10.1115/1.4028941CrossRefGoogle Scholar
  4. 4.
    Choi, S., Kim, J.H.: Fast and reliable minimal relative pose estimation under planar motion. Image Vis. Comput. 69, 103–112 (2018)CrossRefGoogle Scholar
  5. 5.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, vol. 3. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-35651-8
  6. 6.
    Fathian, K., Jin, J., Wee, S.G., Lee, D.H., Kim, Y.G., Gans, N.R.: Camera relative pose estimation for visual servoing using quaternions. Robot. Autonom. Syst. 107, 45–62 (2018).  https://doi.org/10.1016/j.robot.2018.05.014CrossRefGoogle Scholar
  7. 7.
    Faugère, J.C., Lachartre, S.: Parallel Gaussian elimination for gröbner bases computations in finite fields 68(2), 5 (2007).  https://doi.org/10.1145/1837210.1837225
  8. 8.
    Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15561-1_20CrossRefGoogle Scholar
  9. 9.
    Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar
  10. 10.
    Hartley, R.: In defence of the 8-point algorithm. In: Fifth International Conference on Computer Vision, 1995. Proceedings, pp. 1064–1070. IEEE (1995)Google Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)Google Scholar
  12. 12.
    Hartley, R.I., Li, H.: An efficient hidden variable approach to minimal-case camera motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2303–2314 (2012)CrossRefGoogle Scholar
  13. 13.
    Kalantari, M., Hashemi, A., Jung, F., Guédon, J.P.: A new solution to the relative orientation problem using only 3 points and the vertical direction. J. Math. Imaging Vision 39(3), 259–268 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kalantari, M., Jung, F., Guedon, J.-P., Paparoditis, N.: The five points pose problem: a new and accurate solution adapted to any geometric configuration. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 215–226. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-92957-4_19CrossRefGoogle Scholar
  15. 15.
    Kneip, L., Siegwart, R., Pollefeys, M.: Finding the exact rotation between two images independently of the translation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 696–709. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33783-3_50CrossRefGoogle Scholar
  16. 16.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88690-7_23CrossRefGoogle Scholar
  17. 17.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-PT and 6-PT relative pose problems. In: British Machine Vision Conference, vol. 2 (2008)Google Scholar
  18. 18.
    Larsson, V., Åström, K.: Uncovering symmetries in polynomial systems. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 252–267. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46487-9_16CrossRefGoogle Scholar
  19. 19.
    Larsson, V., Astrom, K., Oskarsson, M.: Efficient solvers for minimal problems by syzygy-based reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 820–829 (2017)Google Scholar
  20. 20.
    Lee, G., Pollefeys, M., Fraundorfer, F.: Relative pose estimation for a multi-camera system with known vertical direction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 540–547. IEEE (2014)Google Scholar
  21. 21.
    Lee, G.H., Faundorfer, F., Pollefeys, M.: Motion estimation for self-driving cars with a generalized camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2746–2753 (2013)Google Scholar
  22. 22.
    Lee, G.H., Fraundorfer, F., Pollefeys, M.: Structureless pose-graph loop-closure with a multi-camera system on a self-driving car. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 564–571. IEEE (2013)Google Scholar
  23. 23.
    Li, B., Heng, L., Lee, G., Pollefeys, M.: A 4-point algorithm for relative pose estimation of a calibrated camera with a known relative rotation angle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1595–1601. IEEE (2013)Google Scholar
  24. 24.
    Li, B., Larsson, V.: Gaps: Generator for automatic polynomial solvers. arXiv preprint arXiv:2004.11765 (2020)
  25. 25.
    Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133 (1981)CrossRefGoogle Scholar
  26. 26.
    Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 Year, 1000km: The Oxford RobotCar Dataset. Int. J. Robot. Res.(IJRR) 36(1), 3–15 (2017).  https://doi.org/10.1177/0278364916679498CrossRefGoogle Scholar
  27. 27.
    Martyushev, E.: Self-calibration of cameras with euclidean image plane in case of two views and known relative rotation angle. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 435–449. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01225-0_26CrossRefGoogle Scholar
  28. 28.
    Martyushev, E., Li, B.: Efficient relative pose estimation for cameras and generalized cameras in case of known relative rotation angle. J. Math. Imaging Vision 62(8), 1076–1086 (2020).  https://doi.org/10.1007/s10851-020-00958-5MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Maybank, S.: Theory of reconstruction from image motion, vol. 28. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-77557-4
  30. 30.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)CrossRefGoogle Scholar
  31. 31.
    Pandey, G., McBride, J.R., Eustice, R.M.: Ford campus vision and lidar data set. Int. J. Robot. Res. 30(13), 1543–1552 (2011)CrossRefGoogle Scholar
  32. 32.
    Pless, R.: Using many cameras as one. In: CVPR (2). pp. 587–593. IEEE Computer Society (2003)Google Scholar
  33. 33.
    Ramirez-paredes, J.P., Doucette, E.A., Curtis, J.W., Gans, N.R.: QuEst : a quaternion-based approach for camera. IEEE Robot. Automat. Lett. 3(2), 857–864 (2018)CrossRefGoogle Scholar
  34. 34.
    Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: Robot@home, a robotic dataset for semantic mapping of home environments. International Journal of Robotics Research (2017)Google Scholar
  35. 35.
    Saurer, O., Vasseur, P., Boutteau, R., Demonceaux, C., Pollefeys, M., Fraundorfer, F.: Homography based egomotion estimation with a common direction. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 327–341 (2017).  https://doi.org/10.1109/TPAMI.2016.2545663CrossRefGoogle Scholar
  36. 36.
    Scaramuzza, D.: 1-point-ransac structure from motion for vehicle-mounted cameras by exploiting non-holonomic constraints. Int. J. Comput. Vision 95(1), 74–85 (2011)CrossRefGoogle Scholar
  37. 37.
    Scaramuzza, D., Fraundorfer, F.: Tutorial: visual odometry. IEEE Robot. Autom. Mag. 18, 80–92 (2011)CrossRefGoogle Scholar
  38. 38.
    Shiu, Y.C., Ahmad, S.: Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form ax= xb. IEEE Trans. Robot. Autom. 5(1), 16–29 (1989)CrossRefGoogle Scholar
  39. 39.
    Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. ISPRS J. Photogramm. Remote Sensing 60(4), 284–294 (2006)CrossRefGoogle Scholar
  40. 40.
    Stewénius, H., Nistér, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. Image Vis. Comput. 26(7), 871–877 (2008)CrossRefGoogle Scholar
  41. 41.
    Stewénius, H., Nistér, D., Oskarsson, M., Åström, K.: Solutions to minimal generalized relative pose problems. In: Workshop on Omnidirectional Vision (ICCV) (2005)Google Scholar
  42. 42.
    Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS) (2012)Google Scholar
  43. 43.
    Tsai, R.Y., Lenz, R.K.: Real time versatile robotics hand/eye calibration using 3d machine vision. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp. 554–561. IEEE (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.South Ural State UniversityChelyabinskRussia

Personalised recommendations