Skip to main content

Relative Pose Estimation of Calibrated Cameras with Known \(\mathrm {SE}(3)\) Invariants

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

The \(\mathrm {SE}(3)\) invariants of a pose include its rotation angle and screw translation. In this paper, we present a complete comprehensive study of the relative pose estimation problem for a calibrated camera constrained by known \(\mathrm {SE}(3)\) invariant, which involves 5 minimal problems in total. These problems reduces the minimal number of point pairs for relative pose estimation and improves the estimation efficiency and robustness. The \(\mathrm {SE}(3)\) invariant constraints can come from extra sensor measurements or motion assumption. Unlike conventional relative pose estimation with extra constraints, no extrinsic calibration is required to transform the constraints to the camera frame. This advantage comes from the invariance of \(\mathrm {SE}(3)\) invariants cross different coordinate systems on a rigid body and makes the solvers more convenient and flexible in practical applications. In addition to the concept of relative pose estimation constrained by \(\mathrm {SE}(3)\) invariants, we also present a comprehensive study of existing polynomial formulations for relative pose estimation and discover their relationship. Different formulations are carefully chosen for each proposed problems to achieve best efficiency. Experiments on synthetic and real data shows performance improvement compared to conventional relative pose estimation methods. Our source code is available at: http://github.com/prclibo/relative_pose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonarini, A., Burgard, W., Fontana, G., Matteucci, M., Sorrenti, D.G., Tardos, J.D.: Rawseeds: robotics advancement through web-publishing of sensorial and elaborated extensive data sets. In: proceedings of IROS, vol. 6 (2006)

    Google Scholar 

  2. Chen, H.: A screw motion approach to uniqueness analysis of head-eye geometry. In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 145–151 (1991). https://doi.org/10.1109/CVPR.1991.139677

  3. Chirikjian, G.S.: Partial bi-invariance of SE(3) metrics 1. J. Comput. Inf. Sci. Eng. 15(1), 011008 (2014). https://doi.org/10.1115/1.4028941

    Article  Google Scholar 

  4. Choi, S., Kim, J.H.: Fast and reliable minimal relative pose estimation under planar motion. Image Vis. Comput. 69, 103–112 (2018)

    Article  Google Scholar 

  5. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, vol. 3. Springer, New York (2007). https://doi.org/10.1007/978-0-387-35651-8

  6. Fathian, K., Jin, J., Wee, S.G., Lee, D.H., Kim, Y.G., Gans, N.R.: Camera relative pose estimation for visual servoing using quaternions. Robot. Autonom. Syst. 107, 45–62 (2018). https://doi.org/10.1016/j.robot.2018.05.014

    Article  Google Scholar 

  7. Faugère, J.C., Lachartre, S.: Parallel Gaussian elimination for gröbner bases computations in finite fields 68(2), 5 (2007). https://doi.org/10.1145/1837210.1837225

  8. Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_20

    Chapter  Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  10. Hartley, R.: In defence of the 8-point algorithm. In: Fifth International Conference on Computer Vision, 1995. Proceedings, pp. 1064–1070. IEEE (1995)

    Google Scholar 

  11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  12. Hartley, R.I., Li, H.: An efficient hidden variable approach to minimal-case camera motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2303–2314 (2012)

    Article  Google Scholar 

  13. Kalantari, M., Hashemi, A., Jung, F., Guédon, J.P.: A new solution to the relative orientation problem using only 3 points and the vertical direction. J. Math. Imaging Vision 39(3), 259–268 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kalantari, M., Jung, F., Guedon, J.-P., Paparoditis, N.: The five points pose problem: a new and accurate solution adapted to any geometric configuration. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 215–226. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92957-4_19

    Chapter  Google Scholar 

  15. Kneip, L., Siegwart, R., Pollefeys, M.: Finding the exact rotation between two images independently of the translation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 696–709. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_50

    Chapter  Google Scholar 

  16. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_23

    Chapter  Google Scholar 

  17. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-PT and 6-PT relative pose problems. In: British Machine Vision Conference, vol. 2 (2008)

    Google Scholar 

  18. Larsson, V., Åström, K.: Uncovering symmetries in polynomial systems. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 252–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_16

    Chapter  Google Scholar 

  19. Larsson, V., Astrom, K., Oskarsson, M.: Efficient solvers for minimal problems by syzygy-based reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 820–829 (2017)

    Google Scholar 

  20. Lee, G., Pollefeys, M., Fraundorfer, F.: Relative pose estimation for a multi-camera system with known vertical direction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 540–547. IEEE (2014)

    Google Scholar 

  21. Lee, G.H., Faundorfer, F., Pollefeys, M.: Motion estimation for self-driving cars with a generalized camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2746–2753 (2013)

    Google Scholar 

  22. Lee, G.H., Fraundorfer, F., Pollefeys, M.: Structureless pose-graph loop-closure with a multi-camera system on a self-driving car. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 564–571. IEEE (2013)

    Google Scholar 

  23. Li, B., Heng, L., Lee, G., Pollefeys, M.: A 4-point algorithm for relative pose estimation of a calibrated camera with a known relative rotation angle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1595–1601. IEEE (2013)

    Google Scholar 

  24. Li, B., Larsson, V.: Gaps: Generator for automatic polynomial solvers. arXiv preprint arXiv:2004.11765 (2020)

  25. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133 (1981)

    Article  Google Scholar 

  26. Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 Year, 1000km: The Oxford RobotCar Dataset. Int. J. Robot. Res.(IJRR) 36(1), 3–15 (2017). https://doi.org/10.1177/0278364916679498

    Article  Google Scholar 

  27. Martyushev, E.: Self-calibration of cameras with euclidean image plane in case of two views and known relative rotation angle. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 435–449. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_26

    Chapter  Google Scholar 

  28. Martyushev, E., Li, B.: Efficient relative pose estimation for cameras and generalized cameras in case of known relative rotation angle. J. Math. Imaging Vision 62(8), 1076–1086 (2020). https://doi.org/10.1007/s10851-020-00958-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Maybank, S.: Theory of reconstruction from image motion, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-77557-4

  30. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  31. Pandey, G., McBride, J.R., Eustice, R.M.: Ford campus vision and lidar data set. Int. J. Robot. Res. 30(13), 1543–1552 (2011)

    Article  Google Scholar 

  32. Pless, R.: Using many cameras as one. In: CVPR (2). pp. 587–593. IEEE Computer Society (2003)

    Google Scholar 

  33. Ramirez-paredes, J.P., Doucette, E.A., Curtis, J.W., Gans, N.R.: QuEst : a quaternion-based approach for camera. IEEE Robot. Automat. Lett. 3(2), 857–864 (2018)

    Article  Google Scholar 

  34. Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: Robot@home, a robotic dataset for semantic mapping of home environments. International Journal of Robotics Research (2017)

    Google Scholar 

  35. Saurer, O., Vasseur, P., Boutteau, R., Demonceaux, C., Pollefeys, M., Fraundorfer, F.: Homography based egomotion estimation with a common direction. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 327–341 (2017). https://doi.org/10.1109/TPAMI.2016.2545663

    Article  Google Scholar 

  36. Scaramuzza, D.: 1-point-ransac structure from motion for vehicle-mounted cameras by exploiting non-holonomic constraints. Int. J. Comput. Vision 95(1), 74–85 (2011)

    Article  Google Scholar 

  37. Scaramuzza, D., Fraundorfer, F.: Tutorial: visual odometry. IEEE Robot. Autom. Mag. 18, 80–92 (2011)

    Article  Google Scholar 

  38. Shiu, Y.C., Ahmad, S.: Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form ax= xb. IEEE Trans. Robot. Autom. 5(1), 16–29 (1989)

    Article  Google Scholar 

  39. Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. ISPRS J. Photogramm. Remote Sensing 60(4), 284–294 (2006)

    Article  Google Scholar 

  40. Stewénius, H., Nistér, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. Image Vis. Comput. 26(7), 871–877 (2008)

    Article  Google Scholar 

  41. Stewénius, H., Nistér, D., Oskarsson, M., Åström, K.: Solutions to minimal generalized relative pose problems. In: Workshop on Omnidirectional Vision (ICCV) (2005)

    Google Scholar 

  42. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS) (2012)

    Google Scholar 

  43. Tsai, R.Y., Lenz, R.K.: Real time versatile robotics hand/eye calibration using 3d machine vision. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp. 554–561. IEEE (1988)

    Google Scholar 

Download references

Acknowledgements

The work is supported in part by the Singapore MOE Tier 1 grant R-252-000-A65-114 and the Act 211 Government of the Russian Federation, contract No. 02.A03.21.0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 180 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B., Martyushev, E., Lee, G.H. (2020). Relative Pose Estimation of Calibrated Cameras with Known \(\mathrm {SE}(3)\) Invariants. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics