Skip to main content

Privacy Preserving Visual SLAM

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12367))

Abstract

This study proposes a privacy-preserving Visual SLAM framework for estimating camera poses and performing bundle adjustment with mixed line and point clouds in real time. Previous studies have proposed localization methods to estimate a camera pose using a line-cloud map for a single image or a reconstructed point cloud. These methods offer a scene privacy protection against the inversion attacks by converting a point cloud to a line cloud, which reconstruct the scene images from the point cloud. However, they are not directly applicable to a video sequence because they do not address computational efficiency. This is a critical issue to solve for estimating camera poses and performing bundle adjustment with mixed line and point clouds in real time. Moreover, there has been no study on a method to optimize a line-cloud map of a server with a point cloud reconstructed from a client video because any observation points on the image coordinates are not available to prevent the inversion attacks, namely the reversibility of the 3D lines. The experimental results with synthetic and real data show that our Visual SLAM framework achieves the intended privacy-preserving formation and real-time performance using a line-cloud map.

M. Shibuya, S. Sumikura and K. Sakurada—The authors assert equal contribution and joint first authorship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal, S., et al.: Building Rome in a day. Commun. ACM 54(10), 105–112 (2011)

    Article  Google Scholar 

  2. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: European Conference on Computer Vision (ECCV), pp. 214–227 (2012)

    Google Scholar 

  3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)

    Article  Google Scholar 

  4. Cui, H., Gao, X., Shen, S., Hu, Z.: HSfM: hybrid structure-from-motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1212–1221 (2017)

    Google Scholar 

  5. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  6. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 337–349 (2017)

    Google Scholar 

  7. Dong, R., Fremont, V., Lacroix, S., Fantoni, I., Changan, L.: Line-based monocular graph SLAM. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 494–500 (2017)

    Google Scholar 

  8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Conference on Robot Learning (CoRL), pp. 1–16 (2017)

    Google Scholar 

  9. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. (MVA) 9(5–6), 272–290 (1997)

    Article  Google Scholar 

  10. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(3), 611–625 (2018)

    Article  Google Scholar 

  11. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  12. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  13. Galvez-Lopez, D., Tardos, J.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. (TRO) 28(5), 1188–1197 (2012)

    Article  Google Scholar 

  14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)

    Google Scholar 

  15. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Trans. Intell. Transp. Syst. (ITS) Mag. 2, 31–43 (2010)

    Google Scholar 

  16. Haralick, R.M., Lee, C.N., Ottenburg, K., Nölle, M.: Analysis and solutions of the three point perspective pose estimation problem. In: International Conference on Computer Vision and Pattern Recognition (CVPR), vol. 91, pp. 592–598 (1991)

    Google Scholar 

  17. Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A (JOSA A) 4, 629–642 (1987)

    Google Scholar 

  18. Huizhong, Z., Danping, Z., Pei, L., Ying, R., Liu, P., Wenxian, Y.: StructSLAM: visual SLAM with building structure lines. IEEE Trans. Veh. Technol. (TVT) 64(4), 1364–1375 (2015)

    Article  Google Scholar 

  19. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), pp. 225–234 (2007)

    Google Scholar 

  20. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613 (2011)

    Google Scholar 

  21. Lourakis, M.I.A., Argyros, A.A.: SBA: A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. (TOMS) 36(1) (2009)

    Google Scholar 

  22. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60, 91–118 (2004)

    Article  Google Scholar 

  23. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. (TRO) 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  24. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. (TRO) 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  25. Newcombe, R., Lovegrove, S., Davison, A.: DTAM: dense tracking and mapping in real-time. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327 (2011)

    Google Scholar 

  26. Pittaluga, F., Koppal, S.J., Kang, S.B., Sinha, S.N.: Revealing scenes by inverting structure from motion reconstructions (2019)

    Google Scholar 

  27. Pumarola, A., Vakhitov, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: PL-SLAM: real-time monocular visual SLAM with points and lines. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4503–4508 (2017)

    Google Scholar 

  28. Quan, L., Lan, Z.: Linear N-point camera pose determination. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 21(8), 774–780 (1999)

    Article  Google Scholar 

  29. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)

    Google Scholar 

  30. Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2D-to-3D matching. In: IEEE International Conference on Computer Vision (ICCV), pp. 667–674 (2011)

    Google Scholar 

  31. Schlegel, D., Grisetti, G.: HBST: a hamming distance embedding binary search tree for feature-based visual place recognition. IEEE Robot. Autom. Lett. (RAL) 3(4), 3741–3748 (2018)

    Article  Google Scholar 

  32. Speciale, P., Schonberger, J.L., Kang, S.B., Sinha, S.N., Pollefeys, M.: Privacy preserving image-based localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5493–5503 (2019)

    Google Scholar 

  33. Speciale, P., Schonberger, J.L., Sinha, S.N., Pollefeys, M.: Privacy preserving image queries for camera localization. In: IEEE International Conference on Computer Vision (ICCV), pp. 1486–1496 (2019)

    Google Scholar 

  34. Strasdat, H., Montiel, J., Davison, A.J.: Scale drift-aware large scale monocular SLAM. Robot.: Sci. Syst. VI 2(3), 7 (2010)

    Google Scholar 

  35. Sumikura, S., Shibuya, M., Sakurada, K.: OpenVSLAM: a versatile visual SLAM framework. In: ACM International Conference on Multimedia (ACMMM), pp. 2292–2295. ACM (2019)

    Google Scholar 

  36. Sweeney, C., Fragoso, V., Höllerer, T., Turk, M.: gDLS: a scalable solution to the generalized pose and scale problem. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 16–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_2

    Chapter  Google Scholar 

  37. Tang, J., Ericson, L., Folkesson, J., Jensfelt, P.: GCNv2: efficient correspondence prediction for real-time SLAM. IEEE Robot. Autom. Lett. (RAL) 4(4), 3505–3512 (2019)

    Google Scholar 

  38. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6243–6252 (2017)

    Google Scholar 

  39. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  40. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 4, 376–380 (1991)

    Article  Google Scholar 

  41. Wu, C., Agarwal, S., Curless, B., Seitz, S.: Multicore bundle adjustment. In: International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3057–3064 (2011)

    Google Scholar 

  42. Yang, N., Wang, R., Stckler, J., Cremers, D.: Deep virtual stereo odometry: leveraging deep depth prediction for monocular direct sparse odometry. In: European Conference on Computer Vision (ECCV), pp. 835–852 (2018)

    Google Scholar 

  43. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28

    Chapter  Google Scholar 

  44. Zhou, H., Ummenhofer, B., Brox, T.: DeepTAM: deep tracking and mapping. In: European Conference on Computer Vision (ECCV), pp. 851–868 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Sakurada .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 42922 KB)

Supplementary material 1 (pdf 19922 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shibuya, M., Sumikura, S., Sakurada, K. (2020). Privacy Preserving Visual SLAM. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12367. Springer, Cham. https://doi.org/10.1007/978-3-030-58542-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58542-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58541-9

  • Online ISBN: 978-3-030-58542-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics