Skip to main content

Erasing Appearance Preservation in Optimization-Based Smoothing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12351))

Included in the following conference series:

Abstract

Optimization-based Image smoothing is routinely formulated as the game between a smoothing energy and an appearance preservation energy. Achieving adequate smoothing is a fundamental goal of these Image smoothing algorithms. We show that partially “erasing” the appearance preservation facilitate adequate Image smoothing. In this paper, we call this manipulation as Erasing Appearance Preservation (EAP). We conduct an user study, allowing users to indicate the “erasing” positions by drawing scribbles interactively, to verify the correctness and effectiveness of EAP. We observe the characteristics of human-indicated “erasing” positions, and then formulate a simple and effective 0-1 knapsack to automatically synthesize the “erasing” positions. We test our synthesized erasing positions in a majority of Image smoothing methods. Experimental results and large-scale perceptual human judgments show that the EAP solution tends to encourage the pattern separation or elimination capabilities of Image smoothing algorithms. We further study the performance of the EAP solution in many image decomposition problems to decompose textures, shadows, and the challenging specular reflections. We also present examinations of diversiform image manipulation applications like texture removal, retexturing, intrinsic decomposition, layer extraction, recoloring, material manipulation, etc. Due to the widespread applicability of Image smoothing, the EAP is also likely to be used in more image editing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, F., et al.: Structured sparsity through convex optimization. Stat. Sci. 27(4), 450–468 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bao, L., Song, Y., Yang, Q., Yuan, H., Wang, G.: Tree filtering efficient structure preserving smoothing with a minimum spanning tree. IEEE Trans. Image Process. (2014)

    Google Scholar 

  3. Barrow, H.G., Tenenbaum, J.M.: Recovering intrinsic scene characteristics from images. In: Hanson, A., Riseman, E. (eds.) Computer Vision Systems, pp. 3–26. Academic Press (1978)

    Google Scholar 

  4. Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. ACM Trans. Graph. 33(4), 1–12 (2014)

    Article  Google Scholar 

  5. Bi, S., Han, X., Yu, Y.: An L1 image transform for edge preserving smoothing and scene level intrinsic decomposition. ACM Trans. Graph. 34(4), 1–12 (2015)

    Article  Google Scholar 

  6. Bousseau, A., Paris, S., Durand, F.: User-assisted intrinsic images. ACM Trans. Graph. (2009)

    Google Scholar 

  7. Buzug, M, T.: Computed Tomography. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-39408-2

  8. Carroll, R., Ramamoorthi, R., Agrawala, M.: Illumination decomposition for material recoloring with consistent interreflections. ACM Trans. Graph. (2011)

    Google Scholar 

  9. Champandard, A.J.: Semantic style transfer and turning two-bit doodles into fine artworks. CoRR abs/1603.01768 (2016)

    Google Scholar 

  10. Chen, Q., Li, D., Tang, C.K.: KNN matting. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2175–2188 (2013)

    Article  Google Scholar 

  11. Cho, H., Lee, H., Kang, H., Lee, S.: Bilateral texture filtering. ACM Trans. Graph. 33(4), 1–8 (2014)

    Article  Google Scholar 

  12. Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  13. Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D.: Revisiting deep intrinsic image decompositions. In: CVPR (2018)

    Google Scholar 

  14. Fan, Q., Yang, J., Wipf, D., Chen, B., Tong, X.: Image smoothing via unsupervised learning. ACM Trans. Graph. 37(6), 1–14 (2018)

    Article  Google Scholar 

  15. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31(2–3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  16. Garces, E., Munoz, A., Lopez-Moreno, J., Gutierrez, D.: Intrinsic images by clustering. In: Computer Graphics Forum (2012)

    Google Scholar 

  17. Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset and baseline evaluations for intrinsic image algorithms. In: ICCV (2019)

    Google Scholar 

  18. He, K., Sun, J., Tang, X.: Guied image filtering. TPAMI 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  19. Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 151–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40395-8_12

    Chapter  Google Scholar 

  20. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (Proc. of SIGGRAPH 2017) 36(4), 107:1–107:14 (2017)

    Google Scholar 

  21. Kovacs, B., Bell, S., Snavely, N., Bala, K.: Shading annotations in the wild. In: CVPR (2017)

    Google Scholar 

  22. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pp. 689–694. Association for Computing Machinery, New York (2004)

    Google Scholar 

  23. Li, Z., Snavely, N.: CGIntrinsics: better intrinsic image decomposition through physically-based rendering. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 381–399. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_23

    Chapter  Google Scholar 

  24. Li, Z., Snavely, N.: Learning intrinsic image decomposition from watching the world. In: CVPR (2018)

    Google Scholar 

  25. Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: The European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  26. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 23(12), 5638–5653 (2014)

    Article  MathSciNet  Google Scholar 

  27. Prasath, V.S., Vorotnikov, D., Pelapur, R., Jose, S., Seetharaman, G., Palaniappan, K.: Multiscale Tikhonovtotal variation image restoration using spatially varying edge coherence exponent. IEEE Trans. Image Process. 24(12), 5220–5235 (2015)

    Article  MathSciNet  Google Scholar 

  28. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenomena 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  29. Serra, M., Penacchio, O., Benavente, R., Vanrell, M.: Names and shades of color for intrinsic image estimation. In: CVPR (2012)

    Google Scholar 

  30. Shen, J., Yang, X., Jia, Y., Li, X.: Intrinsic images using optimization. In: CVPR (2011)

    Google Scholar 

  31. Tomasi, C.: Bilateral filtering for gray and color images. In: ICCV (1998)

    Google Scholar 

  32. Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted leastsquares. Commun. Stat. Theory Methods 6(9), 813–827 (1977)

    Article  Google Scholar 

  33. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. ACM Trans. Graph. (2011)

    Google Scholar 

  34. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. 31(6), 1–10 (2012)

    Google Scholar 

  35. Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31(4), 2842–2865 (2009)

    Article  MathSciNet  Google Scholar 

  36. Yin, H., Gong, Y., Qiu, G.: Side window filtering. In: CVPR (2019)

    Google Scholar 

  37. Zhao, Q., Tan, P., Dai, Q., Shen, L., Wu, E., Lin, S.: A closed-form solution to retinex with nonlocal texture constraints. TPAMI 34(7), 1437–1444 (2012)

    Article  Google Scholar 

  38. Zhou, H., Yu, X., Jacobs, D.W.: Glosh: global-local spherical harmonics for intrinsic image decomposition. In: ICCV (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Ji or Chunping Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 72404 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Li, C., Ji, Y., Liu, C., Wong, Tt. (2020). Erasing Appearance Preservation in Optimization-Based Smoothing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58539-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58538-9

  • Online ISBN: 978-3-030-58539-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics