Skip to main content

Lifespan Age Transformation Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12351))

Included in the following conference series:

Abstract

We address the problem of single photo age progression and regression—the prediction of how a person might look in the future, or how they looked in the past. Most existing aging methods are limited to changing the texture, overlooking transformations in head shape that occur during the human aging and growth process. This limits the applicability of previous methods to aging of adults to slightly older adults, and application of those methods to photos of children does not produce quality results. We propose a novel multi-domain image-to-image generative adversarial network architecture, whose learned latent space models a continuous bi-directional aging process. The network is trained on the FFHQ dataset, which we labeled for ages, gender, and semantic segmentation. Fixed age classes are used as anchors to approximate continuous age transformation. Our framework can predict a full head portrait for ages 0–70 from a single photo, modifying both texture and shape of the head. We demonstrate results on a wide variety of photos and datasets, and show significant improvement over the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.appen.com/.

  2. 2.

    https://www.faceplusplus.com/.

  3. 3.

    https://www.faceapp.com/.

References

  1. Antipov, G., Baccouche, M., Dugelay, J.L.: Face aging with conditional generative adversarial networks. arXiv preprint arXiv:1702.01983 (2017)

  2. Bando, Y., Kuratate, T., Nishita, T.: A simple method for modeling wrinkles on human skin. In: 10th Pacific Conference on Computer Graphics and Applications, Proceedings, pp. 166–175. IEEE (2002)

    Google Scholar 

  3. Boissieux, L., Kiss, G., Thalmann, N.M., Kalra, P.: Simulation of skin aging and wrinkles with cosmetics insight. In: Magnenat-Thalmann, N., Thalmann, D., Arnaldi, B. (eds.) Computer Animation and Simulation 2000. Eurographics, pp. 15–27. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-7091-6344-3_2

    Chapter  Google Scholar 

  4. Burt, D.M., Perrett, D.I.: Perception of age in adult Caucasian male faces: computer graphic manipulation of shape and colour information. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 259(1355), 137–143 (1995)

    Google Scholar 

  5. Chen, B.-C., Chen, C.-S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 768–783. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_49

    Chapter  Google Scholar 

  6. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  7. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  8. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. arXiv preprint arXiv:1912.01865 (2019)

  9. Duong, C.N., Luu, K., Quach, K.G., Bui, T.D.: Longitudinal face aging in the wild-recent deep learning approaches. arXiv preprint arXiv:1802.08726 (2018)

  10. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. He, Z., Kan, M., Shan, S., Chen, X.: S2gan: share aging factors across ages and share aging trends among individuals. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  14. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  15. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  17. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  19. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. CoRR abs/1912.04958 (2019)

    Google Scholar 

  20. Kemelmacher-Shlizerman, I., Suwajanakorn, S., Seitz, S.M.: Illumination-aware age progression. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002)

    Article  Google Scholar 

  23. Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGan: towards diverse and interactive facial image manipulation. arXiv preprint arXiv:1907.11922 (2019)

  24. Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3

    Chapter  Google Scholar 

  25. Li, P., Hu, Y., Li, Q., He, R., Sun, Z.: Global and local consistent age generative adversarial networks. arXiv preprint arXiv:1801.08390 (2018)

  26. Liu, M., et al.: STGAN: a unified selective transfer network for arbitrary image attribute editing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3673–3682 (2019)

    Google Scholar 

  27. Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. arXiv preprint arXiv:1905.01723 (2019)

  28. Liu, S., Shi, J., Liang, J., Yang, M.H.: Face parsing via recurrent propagation. arXiv preprint arXiv:1708.01936 (2017)

  29. Liu, Y., Li, Q., Sun, Z.: Attribute-aware face aging with wavelet-based generative adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  30. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  31. Nhan Duong, C., Gia Quach, K., Luu, K., Le, N., Savvides, M.: Temporal non-volume preserving approach to facial age-progression and age-invariant face recognition. In: The IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  32. Nhan Duong, C., Luu, K., Gia Quach, K., Bui, T.D.: Longitudinal face modeling via temporal deep restricted Boltzmann machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5772–5780 (2016)

    Google Scholar 

  33. Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 387–394. IEEE (2006)

    Google Scholar 

  34. Ramanathan, N., Chellappa, R.: Modeling shape and textural variations in aging faces. In: 8th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  35. Ramanathan, N., Chellappa, R., Biswas, S.: Computational methods for modeling facial aging: a survey. J. Vis. Lang. Comput. 20(3), 131–144 (2009)

    Article  Google Scholar 

  36. Rowland, D.A., Perrett, D.I.: Manipulating facial appearance through shape and color. IEEE Comput. Graph. Appl. 15(5), 70–76 (1995)

    Article  Google Scholar 

  37. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANs for semantic face editing. arXiv preprint arXiv:1907.10786 (2019)

  38. Shu, X., Tang, J., Lai, H., Liu, L., Yan, S.: Personalized age progression with aging dictionary. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3970–3978 (2015)

    Google Scholar 

  39. Suo, J., Chen, X., Shan, S., Gao, W., Dai, Q.: A concatenational graph evolution aging model. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2083–2096 (2012)

    Article  Google Scholar 

  40. Suo, J., Zhu, S.C., Shan, S., Chen, X.: A compositional and dynamic model for face aging. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 385–401 (2010)

    Article  Google Scholar 

  41. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017)

    Google Scholar 

  42. Tiddeman, B., Burt, M., Perrett, D.: Prototyping and transforming facial textures for perception research. IEEE Comput. Graph. Appl. 21(5), 42–50 (2001)

    Article  Google Scholar 

  43. Wang, W., et al.: Recurrent face aging. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2378–2386 (2016)

    Google Scholar 

  44. Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7939–7947 (2018)

    Google Scholar 

  45. Wu, Y., Thalmann, N.M., Thalmann, D.: A plastic-visco-elastic model for wrinkles in facial animation and skin aging. In: Fundamentals of Computer Graphics, pp. 201–213. World Scientific (1994)

    Google Scholar 

  46. Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning face age progression: a pyramid architecture of GANs. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  47. Yang, H., Huang, D., Wang, Y., Wang, H., Tang, Y.: Face aging effect simulation using hidden factor analysis joint sparse representation. IEEE Trans. Image Process. 25(6), 2493–2507 (2016)

    Article  MathSciNet  Google Scholar 

  48. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  49. Zhu, J., Zhao, D., Zhang, B.: Lia: latently invertible autoencoder with adversarial learning. arXiv preprint arXiv:1906.08090 (2019)

  50. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: The IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Acknowledgements

We wish to thank Xuan Luo and Aaron Wetzler for their valuable discussions and advice, and Thevina Dokka for her help in building the FFHQ-Aging dataset. This work was supported in part by Futurewei Technologies. O.F. was supported by the Brown Institute for Media Innovation. All images in this manuscript are licensed under creative commons license and were taken from the FFHQ dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Or-El .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 171 KB)

Supplementary material 3 (mp4 238 KB)

Supplementary material 4 (mp4 218 KB)

Supplementary material 5 (mp4 311 KB)

Supplementary material 6 (mp4 153 KB)

Supplementary material 7 (mp4 160 KB)

Supplementary material 1 (pdf 32931 KB)

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Or-El, R., Sengupta, S., Fried, O., Shechtman, E., Kemelmacher-Shlizerman, I. (2020). Lifespan Age Transformation Synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58539-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58538-9

  • Online ISBN: 978-3-030-58539-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics