Advertisement

Efficient Spatio-Temporal Recurrent Neural Network for Video Deblurring

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12351)

Abstract

Real-time video deblurring still remains a challenging task due to the complexity of spatially and temporally varying blur itself and the requirement of low computational cost. To improve the network efficiency, we adopt residual dense blocks into RNN cells, so as to efficiently extract the spatial features of the current frame. Furthermore, a global spatio-temporal attention module is proposed to fuse the effective hierarchical features from past and future frames to help better deblur the current frame. For evaluation, we also collect a novel dataset with paired blurry/sharp video clips by using a co-axis beam splitter system. Through experiments on synthetic and realistic datasets, we show that our proposed method can achieve better deblurring performance both quantitatively and qualitatively with less computational cost against state-of-the-art video deblurring methods.

Keywords

Video deblurring RNN Network efficiency Attention Dataset 

Supplementary material

Supplementary material 1 (avi 5994 KB)

Supplementary material 2 (avi 4504 KB)

Supplementary material 3 (avi 16614 KB)

References

  1. 1.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
  2. 2.
    Bar, L., Berkels, B., Rumpf, M., Sapiro, G.: A variational framework for simultaneous motion estimation and restoration of motion-blurred video. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)Google Scholar
  3. 3.
    Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46487-9_14CrossRefGoogle Scholar
  4. 4.
    Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)Google Scholar
  5. 5.
    Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. ArXiv e-prints, March 2016Google Scholar
  6. 6.
    Goldstein, A., Fattal, R.: Blur-kernel estimation from spectral irregularities. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 622–635. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33715-4_45CrossRefGoogle Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  8. 8.
    Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)Google Scholar
  9. 9.
    Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)Google Scholar
  10. 10.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)Google Scholar
  11. 11.
    Hyun Kim, T., Mu Lee, K.: Segmentation-free dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2766–2773 (2014)Google Scholar
  12. 12.
    Hyun Kim, T., Mu Lee, K.: Generalized video deblurring for dynamic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5426–5434 (2015)Google Scholar
  13. 13.
    Hyun Kim, T., Mu Lee, K., Scholkopf, B., Hirsch, M.: Online video deblurring via dynamic temporal blending network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4038–4047 (2017)Google Scholar
  14. 14.
    Jiang, H., Zheng, Y.: Learning to see moving objects in the dark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7324–7333 (2019)Google Scholar
  15. 15.
    Kim, T.H., Nah, S., Lee, K.M.: Dynamic scene deblurring using a locally adaptive linear blur model. arXiv preprint arXiv:1603.04265 (2016)
  16. 16.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  17. 17.
    Lee, H.S., Kwon, J., Lee, K.M.: Simultaneous localization, mapping and deblurring. In: 2011 International Conference on Computer Vision, pp. 1203–1210. IEEE (2011)Google Scholar
  18. 18.
    Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems, pp. 841–848 (2007)Google Scholar
  19. 19.
    Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
  20. 20.
    Michaeli, T., Irani, M.: Blind deblurring using internal patch recurrence. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 783–798. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10578-9_51CrossRefGoogle Scholar
  21. 21.
    Nah, S., et al.: Ntire 2019 challenge on video deblurring and super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)Google Scholar
  22. 22.
    Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)Google Scholar
  23. 23.
    Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8102–8111 (2019)Google Scholar
  24. 24.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)Google Scholar
  25. 25.
    Nimisha, T.M., Kumar Singh, A., Rajagopalan, A.N.: Blur-invariant deep learning for blind-deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4752–4760 (2017)Google Scholar
  26. 26.
    Pérez, J.S., Meinhardt-Llopis, E., Facciolo, G.: Tv-l1 optical flow estimation. Image Process. On Line 2013, 137–150 (2013)CrossRefGoogle Scholar
  27. 27.
    Ren, W., Pan, J., Cao, X., Yang, M.H.: Video deblurring via semantic segmentation and pixel-wise non-linear kernel. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1077–1085 (2017)Google Scholar
  28. 28.
    Schuler, C.J., Christopher Burger, H., Harmeling, S., Scholkopf, B.: A machine learning approach for non-blind image deconvolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1067–1074 (2013)Google Scholar
  29. 29.
    Seok Lee, H., Mu Lee, K.: Dense 3D reconstruction from severely blurred images using a single moving camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 273–280 (2013)Google Scholar
  30. 30.
    Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1279–1288 (2017)Google Scholar
  31. 31.
    Sun, L., Cho, S., Wang, J., Hays, J.: Good image priors for non-blind deconvolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 231–246. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10593-2_16CrossRefGoogle Scholar
  32. 32.
    Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)Google Scholar
  33. 33.
    Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)Google Scholar
  34. 34.
    Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: Edvr: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)Google Scholar
  35. 35.
    Wieschollek, P., Hirsch, M., Scholkopf, B., Lensch, H.: Learning blind motion deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 231–240 (2017)Google Scholar
  36. 36.
    Wu, Y., Ling, H., Yu, J., Li, F., Mei, X., Cheng, E.: Blurred target tracking by blur-driven tracker. In: 2011 International Conference on Computer Vision, pp. 1100–1107. IEEE (2011)Google Scholar
  37. 37.
    Wulff, J., Black, M.J.: Modeling blurred video with layers. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 236–252. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10599-4_16CrossRefGoogle Scholar
  38. 38.
    Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15549-9_12CrossRefGoogle Scholar
  39. 39.
    Yang, J., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)Google Scholar
  40. 40.
    Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)Google Scholar
  41. 41.
    Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)Google Scholar
  42. 42.
    Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. (2020)Google Scholar
  43. 43.
    Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2482–2491 (2019)Google Scholar
  44. 44.
    Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: 2011 International Conference on Computer Vision, pp. 479–486. IEEE (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The University of TokyoTokyoJapan
  2. 2.Tokyo Research Center, HuaweiTokyoJapan
  3. 3.National Institute of InformaticsTokyoJapan

Personalised recommendations