Skip to main content

Self-challenging Improves Cross-Domain Generalization

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12347))

Included in the following conference series:

Abstract

Convolutional Neural Networks (CNN) conduct image classification by activating dominant features that correlated with labels. When the training and testing data are under similar distributions, their dominant features are similar, leading to decent test performance. The performance is nonetheless unmet when tested with different distributions, leading to the challenges in cross-domain image classification. We introduce a simple training heuristic, Representation Self-Challenging (RSC), that significantly improves the generalization of CNN to the out-of-domain data. RSC iteratively challenges (discards) the dominant features activated on the training data, and forces the network to activate remaining features that correlate with labels. This process appears to activate feature representations applicable to out-of-domain data without prior knowledge of the new domain and without learning extra network parameters. We present the theoretical properties and conditions of RSC for improving cross-domain generalization. The experiments endorse the simple, effective, and architecture-agnostic nature of our RSC method.

Z. Huang, H. Wang—Equal contribution; codes are available at https://github.com/DeLightCMU/RSC

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: MetaReg: towards domain generalization using meta-regularization. In: Advances in Neural Information Processing Systems, pp. 998–1008 (2018)

    Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bridle, J.S., Cox, S.J.: RecNorm: simultaneous normalisation and classification applied to speech recognition. In: Advances in Neural Information Processing Systems. pp. 234–240 (1991)

    Google Scholar 

  4. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2229–2238 (2019)

    Google Scholar 

  5. Csurka, G.: Domain adaptation for visual applications: A comprehensive survey. arXiv preprint arXiv:1702.05374 (2017)

  6. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  7. Dou, Q., Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. arXiv preprint arXiv:1910.13580 (2019)

  8. Gastaldi, X.: Shake-shake regularization. arXiv preprint arXiv:1705.07485 (2017)

  9. Ghiasi, G., Lin, T.Y., Le, Q.V.: DropBlock: a regularization method for convolutional networks. In: Advances in Neural Information Processing Systems, pp. 10727–10737 (2018)

    Google Scholar 

  10. Ghifary, M., Bastiaan Kleijn, W., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2551–2559 (2015)

    Google Scholar 

  11. Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: Ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)

  12. Lee, S., Kim, D., Kim, N., Jeong, S.G.: Drop to adapt: learning discriminative features for unsupervised domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 91–100 (2019)

    Google Scholar 

  13. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  14. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalization. arXiv preprint arXiv:1902.00113 (2019)

  15. Li, H., Jialin Pan, S., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)

    Google Scholar 

  16. Mitchell, T.M., et al.: Machine Learning, vol. 45, no. 37, pp. 870–877. McGraw Hill, Burr Ridge, IL (1997)

    Google Scholar 

  17. Morerio, P., Cavazza, J., Volpi, R., Vidal, R., Murino, V.: Curriculum dropout. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3544–3552 (2017)

    Google Scholar 

  18. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: International Conference on Machine Learning, pp. 10–18 (2013)

    Google Scholar 

  19. Nowlan, S.J., Hinton, G.E.: Simplifying neural networks by soft weight-sharing. Neural Comput. 4(4), 473–493 (1992)

    Article  Google Scholar 

  20. Park, S., Kwak, N.: Analysis on the dropout effect in convolutional neural networks. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10112, pp. 189–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54184-6_12

    Chapter  Google Scholar 

  21. Park, S., Park, J., Shin, S.J., Moon, I.C.: Adversarial dropout for supervised and semi-supervised learning. In: 32nd AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  22. Russakovsky, O.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  23. Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., Sarawagi, S.: Generalizing across domains via cross-gradient training. arXiv preprint arXiv:1804.10745 (2018)

  24. Singh, K.K., Lee, Y.J.: Hide-and-seek: forcing a network to be meticulous for weakly-supervised object and action localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3544–3553. IEEE (2017)

    Google Scholar 

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  27. Torralba, A., Efros, A.A., et al.: Unbiased look at dataset bias. In: CVPR, vol. 1, p. 7. Citeseer (2011)

    Google Scholar 

  28. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  29. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: Advances in Neural Information Processing Systems, pp. 5334–5344 (2018)

    Google Scholar 

  30. Wang, H., Ge, S., Xing, E.P., Lipton, Z.C.: Learning robust global representations by penalizing local predictive power. In: Advances in Neural Information Processing Systems, NeurIPS 2019 (2019)

    Google Scholar 

  31. Wang, H., He, Z., Lipton, Z.C., Xing, E.P.: Learning robust representations by projecting superficial statistics out. In: International Conference on Learning Representations (2019)

    Google Scholar 

  32. Wang, H., Wu, X., Huang, Z., Xing, E.P.: High-frequency component helps explain the generalization of convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8684–8694 (2020)

    Google Scholar 

  33. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/ Interior Business Center (DOI/IBC) contract number D17PC00340. In addition, Haohan Wang is supported by NIH R01GM114311, NIH P30DA035778, and NSF IIS1617583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 235 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Wang, H., Xing, E.P., Huang, D. (2020). Self-challenging Improves Cross-Domain Generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58536-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58535-8

  • Online ISBN: 978-3-030-58536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics