Skip to main content

Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12347))

Included in the following conference series:

  • The original version of this chapter was revised: City and country of the second affiliation was corrected from “Bellevue, USA” to “Shenzhen, China”. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-58536-5_47

Abstract

Deep encoder-decoder based CNNs have advanced image inpainting methods for hole filling. While existing methods recover structures and textures step-by-step in the hole regions, they typically use two encoder-decoders for separate recovery. The CNN features of each encoder are learned to capture either missing structures or textures without considering them as a whole. The insufficient utilization of these encoder features hampers the performance of recovering both structures and textures. In this paper, we propose a mutual encoder-decoder CNN for joint recovery of both. We use CNN features from the deep and shallow layers of the encoder to represent structures and textures of an input image, respectively. The deep layer features are sent to a structure branch, while the shallow layer features are sent to a texture branch. In each branch, we fill holes in multiple scales of the CNN features. The filled CNN features from both branches are concatenated and then equalized. During feature equalization, we reweigh channel attentions first and propose a bilateral propagation activation function to enable spatial equalization. To this end, the filled CNN features of structure and texture mutually benefit each other to represent image content at all feature levels. We then use the equalized feature to supplement decoder features for output image generation through skip connections. Experiments on benchmark datasets show that the proposed method is effective to recover structures and textures and performs favorably against state-of-the-art approaches.

This work is done partially when H. Liu is an intern at Tencent AI Lab. The results and code are available at https://github.com/KumapowerLIU/Rethinking-Inpainting-MEDFE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 06 December 2020

    In the originally published version of chapter 43, the second affiliation stated a wrong city and country. This has been corrected.

References

  1. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. TIP 10, 1200–1211 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: PatchMatch: a randomized correspondence algorithm for structural image editing. In: SIGGRAPH (2009)

    Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH (2000)

    Google Scholar 

  4. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. TIP 13, 1200–1212 (2004)

    Google Scholar 

  5. Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.: Image melding: combining inconsistent images using patch-based synthesis. ACM Trans. Graph. 31, 18 (2012)

    Article  Google Scholar 

  6. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes Paris look like Paris? Commun. ACM 58, 103–110 (2015)

    Article  Google Scholar 

  7. Efros, A., Freeman, W.: Image quilting for texture synthesis and transfer. In: SIGGRAPH (2001)

    Google Scholar 

  8. Efros, A., Freeman, W.: Texture synthesis by nonparametric sampling. In: ICCV (2001)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  11. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NIPS (2017)

    Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  13. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. In: SIGGRAPH (2017)

    Google Scholar 

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  16. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. In: ICLR (2018)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statistics. In: ICCV (2003)

    Google Scholar 

  19. Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: CVPR (2017)

    Google Scholar 

  20. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  21. Liu, H., Jiang, B., Xiao, Y., Yang, C.: Coherent semantic attention for image inpainting. In: ICCV (2019)

    Google Scholar 

  22. Liu, Z., LuoPi, n., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  23. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

  24. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. In: ICCV Workshops (2019)

    Google Scholar 

  25. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

    Google Scholar 

  26. Ren, Y., Yu, X., Zhang, R., Li, T.H., Liu, S., Li, G.: StructureFlow: image inpainting via structure-aware appearance flow. In: ICCV (2019)

    Google Scholar 

  27. Song, Y., Yang, C., Lin, Z., Liu, X., Huang, Q., Li, H., Kuo, C.-C.J.: Contextual-based image inpainting: infer, match, and translate. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_1

    Chapter  Google Scholar 

  28. Song, Y., Bao, L., He, S., Yang, Q., Yang, M.H.: Stylizing face images via multiple exemplars. CVIU 162, 135–145 (2017)

    Google Scholar 

  29. Song, Y., Yang, C., Shen, Y., Wang, P., Huang, Q., Kuo, J.: SPG-Net: segmentation prediction and guidance network for image inpainting. arXiv preprint arXiv:1805.03356 (2018)

  30. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: CVPR (1998)

    Google Scholar 

  31. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  32. Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-column convolutional neural networks. In: NIPS (2018)

    Google Scholar 

  33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)

    Google Scholar 

  34. Xiong, W., Yu, J., Lin, Z., Yang, J., Lu, X., Barnes, C., Luo, J.: Foreground-aware image inpainting. In: CVPR (2019)

    Google Scholar 

  35. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. SIGGRAPH 31, 139 (2012)

    Google Scholar 

  36. Xu, Z., Sun, J.: Image inpainting by patch propagation using patch sparsity. TIP 19, 1153–1165 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-Net: image inpainting via deep feature rearrangement. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_1

    Chapter  Google Scholar 

  38. Yeh, R., Chen, C., Lim, T., Johnson, M.H., Do, M.N.: Semantic image inpainting with perceptual and contextual losses. arXiv preprint arXiv:1607.07539 (2016)

  39. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  40. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: CVPR (2018)

    Google Scholar 

  41. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV (2019)

    Google Scholar 

  42. Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network for high-quality image inpainting. In: CVPR (2019)

    Google Scholar 

  43. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. PAMI 40, 1452–1464 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grant No. 61702176.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Jiang or Yibing Song .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8542 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Jiang, B., Song, Y., Huang, W., Yang, C. (2020). Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58536-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58535-8

  • Online ISBN: 978-3-030-58536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics