Advertisement

Suppress and Balance: A Simple Gated Network for Salient Object Detection

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12347)

Abstract

Most salient object detection approaches use U-Net or feature pyramid networks (FPN) as their basic structures. These methods ignore two key problems when the encoder exchanges information with the decoder: one is the lack of interference control between them, the other is without considering the disparity of the contributions of different encoder blocks. In this work, we propose a simple gated network (GateNet) to solve both issues at once. With the help of multilevel gate units, the valuable context information from the encoder can be optimally transmitted to the decoder. We design a novel gated dual branch structure to build the cooperation among different levels of features and improve the discriminability of the whole network. Through the dual branch design, more details of the saliency map can be further restored. In addition, we adopt the atrous spatial pyramid pooling based on the proposed “Fold” operation (Fold-ASPP) to accurately localize salient objects of various scales. Extensive experiments on five challenging datasets demonstrate that the proposed model performs favorably against most state-of-the-art methods under different evaluation metrics.

Keywords

Salient object detection Gated network Dual branch Fold-ASPP 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China #61876202, #61725202, #61751212 and #61829102, the Dalian Science and Technology Innovation Foundation #2019J12GX039, and the Fundamental Research Funds for the Central Universities # DUT20ZD212.

Supplementary material

504434_1_En_3_MOESM1_ESM.pdf (566 kb)
Supplementary material 1 (pdf 565 KB)

References

  1. 1.
    Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)Google Scholar
  2. 2.
    Amirul Islam, M., Rochan, M., Bruce, N.D., Wang, Y.: Gated feedback refinement network for dense image labeling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3751–3759 (2017)Google Scholar
  3. 3.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)CrossRefGoogle Scholar
  4. 4.
    Chen, S., Tan, X., Wang, B., Hu, X.: Reverse attention for salient object detection. In: Proceedings of European Conference on Computer Vision, pp. 234–250 (2018)Google Scholar
  5. 5.
    Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)Google Scholar
  6. 6.
    Deng, Z., et al.: R3Net: recurrent residual refinement network for saliency detection. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 684–690 (2018)Google Scholar
  7. 7.
    Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4548–4557 (2017)Google Scholar
  8. 8.
    Fang, H., et al.: From captions to visual concepts and back. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1473–1482 (2015)Google Scholar
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  10. 10.
    Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.H.: Deeply supervised salient object detection with short connections. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3203–3212 (2017)Google Scholar
  11. 11.
    Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
  12. 12.
    Jiang, Z., Davis, L.S.: Submodular salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2043–2050 (2013)Google Scholar
  13. 13.
    Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5455–5463 (2015)Google Scholar
  14. 14.
    Li, G., Yu, Y.: Deep contrast learning for salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–487 (2016)Google Scholar
  15. 15.
    Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)Google Scholar
  16. 16.
    Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)Google Scholar
  17. 17.
    Liu, N., Han, J.: DHSNet: deep hierarchical saliency network for salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 678–686 (2016)Google Scholar
  18. 18.
    Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. arXiv preprint arXiv:1506.04579 (2015)
  19. 19.
    Mahadevan, V., Vasconcelos, N.: Saliency-based discriminant tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  20. 20.
    Pang, Y., Zhao, X., Zhang, L., Lu, H.: Multi-scale interactive network for salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 9413–9422 (2020)Google Scholar
  21. 21.
    Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: BASNet: boundary-aware salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 7479–7489 (2019)Google Scholar
  22. 22.
    Ren, Z., Gao, S., Chia, L.T., Tsang, I.W.H.: Region-based saliency detection and its application in object recognition. IEEE Trans. Circuits Syst. Video Technol. 24(5), 769–779 (2013)CrossRefGoogle Scholar
  23. 23.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  24. 24.
    Rui, Z., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  25. 25.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  26. 26.
    Su, J., Li, J., Zhang, Y., Xia, C., Tian, Y.: Selectivity or invariance: boundary-aware salient object detection. In: Proceedings of IEEE International Conference on Computer Vision, pp. 3799–3808 (2019)Google Scholar
  27. 27.
    Wang, L., et al.: Learning to detect salient objects with image-level supervision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2017)Google Scholar
  28. 28.
    Wang, L., Wang, L., Lu, H., Zhang, P., Ruan, X.: Saliency detection with recurrent fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 825–841. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46493-0_50CrossRefGoogle Scholar
  29. 29.
    Wang, T., Borji, A., Zhang, L., Zhang, P., Lu, H.: A stagewise refinement model for detecting salient objects in images. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4019–4028 (2017)Google Scholar
  30. 30.
    Wang, T., Piao, Y., Li, X., Zhang, L., Lu, H.: Deep learning for light field saliency detection. In: Proceedings of IEEE International Conference on Computer Vision, pp. 8838–8848 (2019)Google Scholar
  31. 31.
    Wang, T., et al.: Detect globally, refine locally: a novel approach to saliency detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3127–3135 (2018)Google Scholar
  32. 32.
    Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H.: Salient object detection in the deep learning era: an in-depth survey. arXiv preprint arXiv:1904.09146 (2019)
  33. 33.
    Wang, W., Shen, J., Cheng, M.M., Shao, L.: An iterative and cooperative top-down and bottom-up inference network for salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5968–5977 (2019)Google Scholar
  34. 34.
    Wang, W., Zhao, S., Shen, J., Hoi, S.C., Borji, A.: Salient object detection with pyramid attention and salient edges. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1448–1457 (2019)Google Scholar
  35. 35.
    Wu, R., Feng, M., Guan, W., Wang, D., Lu, H., Ding, E.: A mutual learning method for salient object detection with intertwined multi-supervision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 8150–8159 (2019)Google Scholar
  36. 36.
    Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2019)Google Scholar
  37. 37.
    Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)Google Scholar
  38. 38.
    Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)Google Scholar
  39. 39.
    Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)Google Scholar
  40. 40.
    Yang, G.R., Murray, J.D., Wang, X.J.: A dendritic disinhibitory circuit mechanism for pathway-specific gating. Nat. Commun. 7, 12815 (2016)CrossRefGoogle Scholar
  41. 41.
    Zeng, Y., Zhang, P., Zhang, J., Lin, Z., Lu, H.: Towards high-resolution salient object detection. In: Proceedings of IEEE International Conference on Computer Vision, pp. 7234–7243 (2019)Google Scholar
  42. 42.
    Zhang, L., Dai, J., Lu, H., He, Y., Wang, G.: A bi-directional message passing model for salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1741–1750 (2018)Google Scholar
  43. 43.
    Zhang, L., Zhang, J., Lin, Z., Lu, H., He, Y.: CapSal: leveraging captioning to boost semantics for salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 6024–6033 (2019)Google Scholar
  44. 44.
    Zhang, P., Wang, D., Lu, H., Wang, H., Ruan, X.: Amulet: aggregating multi-level convolutional features for salient object detection. In: Proceedings of IEEE International Conference on Computer Vision, pp. 202–211 (2017)Google Scholar
  45. 45.
    Zhang, X., Wang, T., Qi, J., Lu, H., Wang, G.: Progressive attention guided recurrent network for salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 714–722 (2018)Google Scholar
  46. 46.
    Zhao, T., Wu, X.: Pyramid feature attention network for saliency detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3085–3094 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dalian University of TechnologyDalianChina
  2. 2.Peng Cheng LaboratoryShenzhenChina
  3. 3.Department of ComputingThe Hong Kong Polytechnic UniversityHong KongChina
  4. 4.DAMO Academy, Alibaba GroupHangzhouChina

Personalised recommendations