Skip to main content

GDumb: A Simple Approach that Questions Our Progress in Continual Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12347))

Included in the following conference series:

Abstract

We discuss a general formulation for the Continual Learning (CL) problem for classification—a learning task where a stream provides samples to a learner and the goal of the learner, depending on the samples it receives, is to continually upgrade its knowledge about the old classes and learn new ones. Our formulation takes inspiration from the open-set recognition problem where test scenarios do not necessarily belong to the training distribution. We also discuss various quirks and assumptions encoded in recently proposed approaches for CL. We argue that some oversimplify the problem to an extent that leaves it with very little practical importance, and makes it extremely easy to perform well on. To validate this, we propose GDumb that (1) greedily stores samples in memory as they come and; (2) at test time, trains a model from scratch using samples only in the memory. We show that even though GDumb is not specifically designed for CL problems, it obtains state-of-the-art accuracies (often with large margins) in almost all the experiments when compared to a multitude of recently proposed algorithms. Surprisingly, it outperforms approaches in CL formulations for which they were specifically designed. This, we believe, raises concerns regarding our progress in CL for classification. Overall, we hope our formulation, characterizations and discussions will help in designing realistically useful CL algorithms, and GDumb will serve as a strong contender for the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The sequential learning problem. In: Psychology of Learning and Motivation (1989)

    Google Scholar 

  2. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211 (2013)

  3. Li, Z., Hoiem, D.: Learning without forgetting. TPAMI 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  4. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: incremental classifier and representation learning. In: CVPR (2017)

    Google Scholar 

  5. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. ICML 70, 3987 (2017)

    Google Scholar 

  6. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. PNAS 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  7. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: NeurIP (2017)

    Google Scholar 

  8. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: ECCV (2018)

    Google Scholar 

  9. De Lange, M., et al.: Continual learning: a comparative study on how to defy forgetting in classification tasks. arXiv preprint arXiv:1909.08383 (2019)

  10. Scheirer, W., Rocha, A., Sapkota, A., Boult, T.: Towards open set recognition. TPAMI 35(7), 1757–1772 (2012)

    Article  Google Scholar 

  11. Aljundi, R., Caccia, L., Belilovsky, E., Caccia, M., Charlin, L., Tuytelaars, T.: Online continual learning with maximally interfered retrieval. In: NeurIPS (2019)

    Google Scholar 

  12. Jin, X., Du, J., Ren, X.: Gradient based memory editing for task-free continual learning (2020)

    Google Scholar 

  13. Dhar, P., Vikram Singh, R., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: CVPR (2019)

    Google Scholar 

  14. Zhang, J., et al.: Class-incremental learning via deep model consolidation. In: WACV (2020)

    Google Scholar 

  15. Yu, L., et al.: Semantic drift compensation for class-incremental learning. In: CVPR (2020)

    Google Scholar 

  16. Wu, Y., et al.: Large scale incremental learning. In: CVPR (2019)

    Google Scholar 

  17. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: CVPR (2019)

    Google Scholar 

  18. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: ECCV (2018)

    Google Scholar 

  19. Belouadah, E., Popescu, A.: Il2m: class incremental learning with dual memory. In: ICCV (2019)

    Google Scholar 

  20. Zhao, B., Xiao, X., Gan, G., Zhang, B., Xia, S.T.: Maintaining discrimination and fairness in class incremental learning. In: CVPR (2020)

    Google Scholar 

  21. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: Small-task incremental learning. ECCV (2020)

    Google Scholar 

  22. Liu, Y., Su, Y., Liu, A.A., Schiele, B., Sun, Q.: Mnemonics training: multi-class incremental learning without forgetting. In: CVPR (2020)

    Google Scholar 

  23. Rajasegaran, J., Hayat, M., Khan, S., Khan, F.S., Shao, L.: Random path selection for incremental learning. In: NeurIPS (2019)

    Google Scholar 

  24. Rajasegaran, J., Khan, S., Hayat, M., Khan, F.S., Shah, M.: itaml: an incremental task-agnostic meta-learning approach. In: CVPR (2020)

    Google Scholar 

  25. Abati, D., Tomczak, J., Blankevoort, T., Calderara, S., Cucchiara, R., Bejnordi, B.E.: Conditional channel gated networks for task-aware continual learning. In: CVPR (2020)

    Google Scholar 

  26. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  27. Yoon, J., Lee, J., Yang, E., Hwang, S.J.: Lifelong learning with dynamically expandable network. In: ICLR (2018)

    Google Scholar 

  28. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: NeurIPS (2017)

    Google Scholar 

  29. Schwarz, J., et al.: Progress & compress: a scalable framework for continual learning. ICML (2018)

    Google Scholar 

  30. Yoon, J., Kim, S., Yang, E., Hwang, S.J.: Scalable and order-robust continual learning with additive parameter decomposition. In: ICLR (2020)

    Google Scholar 

  31. Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E.: Variational continual learning. In: ICLR (2018)

    Google Scholar 

  32. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: ECCV (2018)

    Google Scholar 

  33. Lee, S.W., Kim, J.H., Jun, J., Ha, J.W., Zhang, B.T.: Overcoming catastrophic forgetting by incremental moment matching. In: NeurIPS (2017)

    Google Scholar 

  34. Chaudhry, A., et al.: Continual learning with tiny episodic memories. ICML-W (2019)

    Google Scholar 

  35. Chaudhry, A., Gordo, A., Lopez-Paz, D., Dokania, P.K., Torr, P.: Using hindsight to anchor past knowledge in continual learning (2020)

    Google Scholar 

  36. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with a-gem. In: ICLR (2019)

    Google Scholar 

  37. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In: NeurIPS (2019)

    Google Scholar 

  38. Tulving, E.: Episodic memory: from mind to brain. Ann. Rev. Psychol. 53(1), 1–25 (2002)

    Article  Google Scholar 

  39. Norman, K.A., O’Reilly, R.C.: Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev. 110(4), 611 (2003)

    Article  Google Scholar 

  40. Ren, M., Iuzzolino, M.L., Mozer, M.C., Zemel, R.S.: Wandering within a world: online contextualized few-shot learning. arXiv preprint arXiv:2007.04546 (2020)

  41. Ji, X., Henriques, J., Tuytelaars, T., Vedaldi, A.: Automatic recall machines: internal replay, continual learning and the brain. arXiv preprint arXiv:2006.12323 (2020)

  42. Hsu, Y.C., Liu, Y.C., Kira, Z.: Re-evaluating continual learning scenarios: a categorization and case for strong baselines. In: NeurIPS-W (2018)

    Google Scholar 

  43. Riemer, M., et al.: Learning to learn without forgetting by maximizing transfer and minimizing interference. In: ICLR (2019)

    Google Scholar 

  44. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T.P., Wayne, G.: Experience replay for continual learning. In: NeurIPS (2019)

    Google Scholar 

  45. Loshchilov, I., Hutter, F.: Sgdr: stochastic gradient descent with warm restarts. In: ICLR (2017)

    Google Scholar 

  46. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)

    Google Scholar 

  47. Yin, H., et al.: Dreaming to distill: data-free knowledge transfer via deepinversion. In: CVPR (2020)

    Google Scholar 

  48. Zeno, C., Golan, I., Hoffer, E., Soudry, D.: Task agnostic continual learning using online variational bayes. arXiv preprint arXiv:1803.10123 (2018)

  49. Hocquet, G., Bichler, O., Querlioz, D.: Ova-inn: continual learning with invertible neural networks. IJCNN (2020)

    Google Scholar 

  50. van de Ven, G.M., Tolias, A.S.: Generative replay with feedback connections as a general strategy for continual learning. arXiv preprint arXiv:1809.10635 (2018)

  51. Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. ICML (2018)

    Google Scholar 

  52. Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong learning. In: CVPR (2017)

    Google Scholar 

  53. Mallya, A., Lazebnik, S.: Packnet: adding multiple tasks to a single network by iterative pruning. In: CVPR (2018)

    Google Scholar 

  54. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgements

AP would like to thank Aditya Bharti, Shyamgopal Karthik, Saujas Vaduguru, and Aurobindo Munagala for helpful discussions. PHS and PD thank EPSRC/MURI grant EP/N019474/1, and Facebook (DeepFakes grant) for their support. This project was supported by the Royal Academy of Engineering under the Research Chair and Senior Research Fellowships scheme. PHS and PD also acknowledge FiveAI UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameya Prabhu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 106 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prabhu, A., Torr, P.H.S., Dokania, P.K. (2020). GDumb: A Simple Approach that Questions Our Progress in Continual Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58536-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58535-8

  • Online ISBN: 978-3-030-58536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics