Skip to main content

Transforming and Projecting Images into Class-Conditional Generative Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12347))

Included in the following conference series:

Abstract

We present a method for projecting an input image into the space of a class-conditional generative neural network. We propose a method that optimizes for transformation to counteract the model biases in generative neural networks. Specifically, we demonstrate that one can solve for image translation, scale, and global color transformation, during the projection optimization to address the object-center bias and color bias of a Generative Adversarial Network. This projection process poses a difficult optimization problem, and purely gradient-based optimizations fail to find good solutions. We describe a hybrid optimization strategy that finds good projections by estimating transformations and class parameters. We show the effectiveness of our method on real images and further demonstrate how the corresponding projections lead to better editability of these images. The project page and the code is available at https://minyoungg.github.io/GAN-Transform-and-Project/.

M. Huh—Work started during an internship at Adobe Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space? In: International Conference on Computer Vision (2019)

    Google Scholar 

  2. Ankit, R., Li, Y., Bresler, Y.: GAN-based projector for faster recovery with convergence guarantees in linear inverse problems. In: International Conference on Computer Vision (2019)

    Google Scholar 

  3. Asim, M., Shamshad, F., Ahmed, A.: Blind image deconvolution using deep generative priors. In: British Machine Vision Conference (2018)

    Google Scholar 

  4. Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004). https://doi.org/10.1023/B:VISI.0000011205.11775.fd

    Article  Google Scholar 

  5. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. (TOG) 28, 24 (2009)

    Article  Google Scholar 

  6. Bau, D., et al.: Semantic photo manipulation with a generative image prior. ACM Trans. Graph. (TOG) 38 (2019)

    Google Scholar 

  7. Bau, D., et al.: GAN dissection: visualizing and understanding generative adversarial networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  8. Bau, D., et al.: Seeing what a GAN cannot generate. In: International Conference on Computer Vision (2019)

    Google Scholar 

  9. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019)

    Google Scholar 

  10. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Neural photo editing with introspective adversarial networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  11. Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial network. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 1967–1974 (2018)

    Article  Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  13. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

  14. Donahue, J., Simonyan, K.: Large scale adversarial representation learning. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  15. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  16. Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  17. Dumoulin, V., et al.: Adversarially learned inference. In: International Conference on Learning Representations (2017)

    Google Scholar 

  18. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: ACM SIGGRAPH (2001)

    Google Scholar 

  19. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: International Conference on Computer Vision (1999)

    Google Scholar 

  20. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  21. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  22. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Pearson, London (1992)

    Google Scholar 

  23. Goodfellow, I.: NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160 (2016)

  24. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  25. Gu, J., Shen, Y., Zhou, B.: Image processing using multi-code GAN prior. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  26. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)

    Article  Google Scholar 

  27. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: International Conference on Computer Vision (2017)

    Google Scholar 

  28. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: ACM SIGGRAPH (2001)

    Google Scholar 

  29. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  30. Jahanian, A., Chai, L., Isola, P.: On the"steerability" of generative adversarial networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  31. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) European Conference on Computer Vision, vol. 9906, pp. 694–711. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-46475-6_43

  32. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  33. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  35. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  36. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Master’s Thesis, University of Toronto (2009)

    Google Scholar 

  37. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  38. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2007)

    Article  Google Scholar 

  39. Lin, T., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) European Conference on Computer Vision, vol. 8693, pp. 740–755. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  40. Lipton, Z.C., Tripathi, S.: Precise recovery of latent vectors from generative adversarial networks. ICLR Workshop (2017)

    Google Scholar 

  41. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989). https://doi.org/10.1007/BF01589116

    Article  MathSciNet  MATH  Google Scholar 

  42. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  43. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill 2(11), e7 (2017)

    Article  Google Scholar 

  44. Olah, C., et al.: The building blocks of interpretability. Distill 3(3), e10 (2018)

    Article  Google Scholar 

  45. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing, 2nd edn. Pearson, London (1999)

    Google Scholar 

  46. Perarnau, G., Van De Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. In: NIPS 2016 Workshop on Adversarial Training (2016)

    Google Scholar 

  47. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. (TOG) 22(3), 313–318 (2003)

    Article  Google Scholar 

  48. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: International Conference on Learning Representations (2016)

    Google Scholar 

  49. Shah, V., Hegde, C.: Solving linear inverse problems using GAN priors: an algorithm with provable guarantees. In: ICASSP (2018)

    Google Scholar 

  50. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANs for semantic face editing. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  51. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  52. Tiantian, F., Schwing, A.: Co-generation with GANs using AIS based HMC. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  53. Wampler, K., Popović, Z.: Optimal gait and form for animal locomotion. ACM Trans. Graph. (TOG) 28, 1–8 (2009)

    Article  Google Scholar 

  54. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  55. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. arXiv preprint arXiv:1611.05431 (2016)

  56. Yeh, R.A., Chen, C., Yian Lim, T., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  57. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  58. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) European Conference on Computer Vision, vol. 9907, pp. 649–666 Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-46487-9_40

  59. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep networks as a perceptual metric. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  60. Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) European Conference on Computer Vision, vol. 9909, pp. 597–613. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-46454-1_36

Download references

Acknowledgements

We thank David Bau, Phillip Isola, Lucy Chai, and Erik Härkönen for discussions, and David Bau for encoder training code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minyoung Huh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3691 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huh, M., Zhang, R., Zhu, JY., Paris, S., Hertzmann, A. (2020). Transforming and Projecting Images into Class-Conditional Generative Networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58536-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58535-8

  • Online ISBN: 978-3-030-58536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics