Skip to main content

Handcrafted Outlier Detection Revisited

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12364))

Included in the following conference series:

Abstract

Local feature matching is a critical part of many computer vision pipelines, including among others Structure-from-Motion, SLAM, and Visual Localization. However, due to limitations in the descriptors, raw matches are often contaminated by a majority of outliers. As a result, outlier detection is a fundamental problem in computer vision and a wide range of approaches, from simple checks based on descriptor similarity to geometric verification, have been proposed over the last decades. In recent years, deep learning-based approaches to outlier detection have become popular. Unfortunately, the corresponding works rarely compare with strong classical baselines. In this paper we revisit handcrafted approaches to outlier filtering. Based on best practices, we propose a hierarchical pipeline for effective outlier detection as well as integrate novel ideas which in sum lead to an efficient and competitive approach to outlier rejection. We show that our approach, although not relying on learning, is more than competitive to both recent learned works as well as handcrafted approaches, both in terms of efficiency and effectiveness. The code is available at https://github.com/cavalli1234/AdaLAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albarelli, A., Rodola, E., Torsello, A.: Robust game-theoretic inlier selection for bundle adjustment. In: International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT2010) (2010)

    Google Scholar 

  2. Avrithis, Y., Tolias, G.: Hough pyramid matching: speeded-up geometry re-ranking for large scale image retrieval. Int. J. Comput. Vis. (IJCV) 107(1), 1–19 (2014). https://doi.org/10.1007/s11263-013-0659-3

    Article  Google Scholar 

  3. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (slam): part ii. IEEE Rob. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  4. Barath, D., Matas, J.: Graph-cut RANSAC. In: Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  5. Barath, D., Matas, J., Noskova, J.: MAGSAC: marginalizing sample consensus. In: Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  6. Bian, J., Lin, W.Y., Matsushita, Y., Yeung, S.K., Nguyen, T.D., Cheng, M.M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Brachmann, E., Rother, C.: Neural-guided RANSAC: learning where to sample model hypotheses. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  8. Cech, J., Matas, J., Perdoch, M.: Efficient sequential correspondence selection by cosegmentation. Trans. Pattern Anal. Mach. Intell. (PAMI) 32(9), 1568–1581 (2010)

    Article  Google Scholar 

  9. Chum, O., Matas, J.: Matching with PROSAC-progressive sample consensus. In: Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  10. Chum, O., Matas, J.: Optimal randomized RANSAC. Trans. Pattern Anal. Mach. Intell. (PAMI) 30(8), 1472–1482 (2008)

    Article  Google Scholar 

  11. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45243-0_31

    Chapter  Google Scholar 

  12. Dang, Z., Yi, K.M., Hu, Y., Wang, F., Fua, P., Salzmann, M.: Eigendecomposition-free training of deep networks with zero eigenvalue-based losses. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 792–807. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_47

    Chapter  Google Scholar 

  13. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Rob. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  14. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. (CVIU) 68(2), 146–157 (1997)

    Article  Google Scholar 

  16. Heinly, J., Schönberger, J.L., Dunn, E., Frahm, J.M.: Reconstructing the world* in six days *(as captured by the yahoo 100 million image dataset). In: Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  17. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_24

    Chapter  Google Scholar 

  18. Johns, E., Yang, G.Z.: RANSAC with 2D geometric cliques for image retrieval and place recognition. In: Computer Vision and Pattern Recognition Workshops (CVPRW) (2015)

    Google Scholar 

  19. Jung, I.K., Lacroix, S.: A robust interest points matching algorithm. In: International Conference on Computer Vision (ICCV) (2001)

    Google Scholar 

  20. Köser, K.: Geometric estimation with local affine frames and free-form surfaces. Ph.D. thesis, University of Kiel (2009). http://d-nb.info/994782322

  21. Lebeda, K., Matas, J., Chum, O.: Fixing the locally optimized RANSAC-full experimental evaluation. In: British Machine Vision Conference (BMVC) (2012)

    Google Scholar 

  22. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: International Conference on Computer Vision (ICCV) (2005)

    Google Scholar 

  23. Li, X., Larson, M., Hanjalic, A.: Pairwise geometric matching for large-scale object retrieval. In: Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  24. Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized feature matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_57

    Chapter  Google Scholar 

  25. Lin, W.-Y., Liu, S., Jiang, N., Do, M.N., Tan, P., Lu, J.: RepMatch: robust feature matching and pose for reconstructing modern cities. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 562–579. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_34

    Chapter  Google Scholar 

  26. Lin, W.Y., et al.: CODE: coherence based decision boundaries for feature correspondence. Trans. Pattern Anal. Mach. Intell. (PAMI) 40(1), 34–47 (2017)

    Article  Google Scholar 

  27. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  28. Ma, J., Zhao, J., Jiang, J., Zhou, H., Guo, X.: Locality preserving matching. Int. J. Comput. Vis. (IJCV) 127(5), 512–531 (2019). https://doi.org/10.1007/s11263-018-1117-z

    Article  MathSciNet  Google Scholar 

  29. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Conference on Artificial Intelligence (AAAI) (2002)

    Google Scholar 

  30. Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  31. Ni, K., Jin, H., Dellaert, F.: GroupSAC: efficient consensus in the presence of groupings. In: International Conference on Computer Vision (ICCV) (2009)

    Google Scholar 

  32. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. Trans. Pattern Anal. Mach. Intell. (PAMI) 35(8), 2022–2038 (2012)

    Article  Google Scholar 

  33. Ranftl, R., Koltun, V.: Deep fundamental matrix estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 292–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_18

    Chapter  Google Scholar 

  34. Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbourhood consensus networks. In: Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  35. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  36. Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  37. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: Computer Vision and Pattern Recognition (CVPR), pp. 4938–4947 (2020)

    Google Scholar 

  38. Sattler, T., Leibe, B., Kobbelt, L.: SCRAMSAC: improving RANSAC’s efficiency with a spatial consistency filter. In: International Conference on Computer Vision (ICCV) (2009)

    Google Scholar 

  39. Sattler, T., et al.: Benchmarking 6DOF outdoor visual localization in changing conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8601–8610 (2018)

    Google Scholar 

  40. Schönberger, J.L., Price, T., Sattler, T., Frahm, J.-M., Pollefeys, M.: A vote-and-verify strategy for fast spatial verification in image retrieval. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 321–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_21

    Chapter  Google Scholar 

  41. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  42. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  43. Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. Trans. Pattern Anal. Mach. Intell. (PAMI) 31(4), 591–606 (2008)

    Article  Google Scholar 

  44. Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  45. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: International Conference on Intelligent Robots and Systems (IROS) (2012)

    Google Scholar 

  46. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., Li, L.J.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)

    Article  Google Scholar 

  47. Torr, P.H., Nasuto, S.J., Bishop, J.M.: NAPSAC: high noise, high dimensional robust estimation-it’s in the bag. In: British Machine Vision Conference (BMVC) (2002)

    Google Scholar 

  48. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. (CVIU) 78(1), 138–156 (2000)

    Article  Google Scholar 

  49. Ullman, S.: The interpretation of structure from motion. Proc. R. Soc. Lond. B Biol. Sci. 203(1153), 405–426 (1979)

    Article  Google Scholar 

  50. Wu, C.: SiftGPU: a GPU implementation of scale invariant feature transform (SIFT) (2011). http://cs.unc.edu/~ccwu/siftgpu

  51. Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In: Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  52. Wu, C., et al.: VisualSFM: a visual structure from motion system (2011)

    Google Scholar 

  53. Wu, X., Kashino, K.: Adaptive dither voting for robust spatial verification. In: International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  54. Wu, X., Kashino, K.: Robust spatial matching as ensemble of weak geometric relations. In: British Machine Vision Conference (BMVC) (2015)

    Google Scholar 

  55. Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web image search. In: Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  56. Xiao, J., Owens, A., Torralba, A.: SUN3D: a database of big spaces reconstructed using SFM and object labels. In: International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  57. Zhang, J., et al.: Learning two-view correspondences and geometry using order-aware network (2019)

    Google Scholar 

  58. Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif. Intell. 78(1–2), 87–119 (1995)

    Article  Google Scholar 

  59. Zhao, C., Cao, Z., Li, C., Li, X., Yang, J.: NM-Net: mining reliable neighbors for robust feature correspondences. In: Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Google Focused Research Award, by the Swedish Foundation for Strategic Research (Semantic Mapping and Visual Navigation for Smart Robots), the Chalmers AI Research Centre (CHAIR) (VisLocLearn) and Innosuisse funding (Grant No. 34475.1 IP-ICT). Viktor Larsson was supported by an ETH Zurich Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Larsson .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18658 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavalli, L., Larsson, V., Oswald, M.R., Sattler, T., Pollefeys, M. (2020). Handcrafted Outlier Detection Revisited. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12364. Springer, Cham. https://doi.org/10.1007/978-3-030-58529-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58529-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58528-0

  • Online ISBN: 978-3-030-58529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics