Skip to main content

RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12364))

Included in the following conference series:

Abstract

Video action recognition is a complex task dependent on modeling spatial and temporal context. Standard approaches rely on 2D or 3D convolutions to process such context, resulting in expensive operations with millions of parameters. Recent efficient architectures leverage a channel-wise shift-based primitive as a replacement for temporal convolutions, but remain bottlenecked by spatial convolution operations to maintain strong accuracy and a fixed-shift scheme. Naively extending such developments to a 3D setting is a difficult, intractable goal. To this end, we introduce RubiksNet, a new efficient architecture for video action recognition which is based on a proposed learnable 3D spatiotemporal shift operation instead. We analyze the suitability of our new primitive for video action recognition and explore several novel variations of our approach to enable stronger representational flexibility while maintaining an efficient design. We benchmark our approach on several standard video recognition datasets, and observe that our method achieves comparable or better accuracy than prior work on efficient video action recognition at a fraction of the performance cost, with 2.9–5.9\(\times \) fewer parameters and 2.1–3.7\(\times \) fewer FLOPs. We also perform a series of controlled ablation studies to verify our significant boost in the efficiency-accuracy tradeoff curve is rooted in the core contributions of our RubiksNet architecture.

L. Fan and S. Buch—Equal contribution lead author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See rubiksnet.stanford.edu project page for supplementary material.

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  2. Chen, W., Xie, D., Zhang, Y., Pu, S.: All you need is a few shifts: designing efficient convolutional neural networks for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7241–7250 (2019)

    Google Scholar 

  3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  4. Fan, Q., Chen, C.F.R., Kuehne, H., Pistoia, M., Cox, D.: More is less: learning efficient video representations by big-little network and depthwise temporal aggregation. In: Advances in Neural Information Processing Systems, pp. 2261–2270 (2019)

    Google Scholar 

  5. Feichtenhofer, C., Pinz, A., Wildes, R.: Spatiotemporal residual networks for video action recognition. In: Advances in Neural Information Processing Systems, pp. 3468–3476 (2016)

    Google Scholar 

  6. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  7. Hacene, G.B., Lassance, C., Gripon, V., Courbariaux, M., Bengio, Y.: Attention based pruning for shift networks. arXiv:1905.12300 [cs] (May 2019)

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  10. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and\(<\)0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  11. Jeon, Y., Kim, J.: Constructing fast network through deconstruction of convolution. In: Advances in Neural Information Processing Systems, pp. 5951–5961 (2018)

    Google Scholar 

  12. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

    Article  Google Scholar 

  13. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  14. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  15. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2556–2563. IEEE (2011)

    Google Scholar 

  16. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding (2018)

    Google Scholar 

  17. Mahdisoltani, F., Berger, G., Gharbieh, W., Fleet, D., Memisevic, R.: On the effectiveness of task granularity for transfer learning. arXiv preprint arXiv:1804.09235 (2018)

  18. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)

    Google Scholar 

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  22. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  23. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  24. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5552–5561 (2019)

    Google Scholar 

  25. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  26. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  27. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  28. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 413–431. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_25

    Chapter  Google Scholar 

  29. Wu, B., et al.: Shift: A zero flop, zero parameter alternative to spatial convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9127–9135 (2018)

    Google Scholar 

  30. Wu, C.Y., Zaheer, M., Hu, H., Manmatha, R., Smola, A.J., Krähenbühl, P.: Compressed video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6026–6035 (2018)

    Google Scholar 

  31. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  32. Yao, G., Lei, T., Zhong, J.: A review of convolutional-neural-network-based action recognition. Pattern Recogn. Lett. 118, 14–22 (2019)

    Article  Google Scholar 

  33. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  34. Zhao, Y., Xiong, Y., Lin, D.: Trajectory convolution for action recognition. In: Advances in Neural Information Processing Systems, pp. 2204–2215 (2018)

    Google Scholar 

  35. Zhong, H., Liu, X., He, Y., Ma, Y., Kitani, K.: Shift-based primitives for efficient convolutional neural networks. arXiv preprint arXiv:1809.08458 (2018)

  36. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 831–846. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_49

    Chapter  Google Scholar 

  37. Zolfaghari, M., Singh, K., Brox, T.: ECO: efficient convolutional network for online video understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 713–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_43

    Chapter  Google Scholar 

Download references

Acknowledgements

L. Fan and S. Buch are supported by SGF and NDSEG fellowships, respectively. This research was sponsored in part by grants from Toyota Research Institute (TRI). Some computational support for experiments was provided by Google Cloud and NVIDIA. This article reflects the authors’ opinions and conclusions, and not any other entity. We thank Ji Lin, Song Han, De-An Huang, Danfei Xu, the general Stanford Vision Lab (SVL) community, and our anonymous reviewers for helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linxi Fan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 39 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, L. et al. (2020). RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12364. Springer, Cham. https://doi.org/10.1007/978-3-030-58529-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58529-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58528-0

  • Online ISBN: 978-3-030-58529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics