Advertisement

Accurate Polarimetric BRDF for Real Polarization Scene Rendering

Conference paper
  • 638 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12364)

Abstract

Polarization has been used to solve a lot of computer vision tasks such as Shape from Polarization (SfP). But existing methods suffer from ambiguity problems of polarization. To overcome such problems, some research works have suggested to use Convolutional Neural Network (CNN). But acquiring large scale dataset with polarization information is a very difficult task. If there is an accurate model which can describe a complicated phenomenon of polarization, we can easily produce synthetic polarized images with various situations to train CNN.

In this paper, we propose a new polarimetric BRDF (pBRDF) model. We prove its accuracy by fitting our model to measured data with variety of light and camera conditions. We render polarized images using this model and use them to estimate surface normal. Experiments show that the CNN trained by our polarized images has more accuracy than one trained by RGB only.

Keywords

Polarization Shape from polarization Polarimetric BRDF Convolutional Neural Network 

Notes

Acknowledgment

We express our sincere thanks to our colleagues from Sony Corporation for their helpful discussion and support.

Supplementary material

504475_1_En_14_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (pdf 1885 KB)

References

  1. 1.
    Atkinson, G.A., Hancock, E.R.: Multi-view surface reconstruction using polarization. In: IEEE International Conference on Computer Vision, vol. 1, pp. 309–316. IEEE (2005)Google Scholar
  2. 2.
    Atkinson, G.A., Hancock, E.R.: Polarization-based surface reconstruction via patch matching. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 495–502. IEEE (2006)Google Scholar
  3. 3.
    Atkinson, G.A., Hancock, E.R.: Recovery of surface orientation from diffuse polarization. IEEE Trans. Image Process. 15(6), 1653–1664 (2006)CrossRefGoogle Scholar
  4. 4.
    Atkinson, G.A., Hancock, E.R.: Recovering material reflectance from polarization and simulated annealing. In: Belhumeur, P., Ikeuchi, K., Prados, E., Soatto, S., Sturm, P. (eds.) Proceedings of the First International Workshop on Photometric Analysis For Computer Vision - PACV 2007, p. 8. INRIA, Rio de Janeiro (2007). https://hal.inria.fr/inria-00265255, iSBN 2-7261-1297 8
  5. 5.
    Atkinson, G.A., Hancock, E.R.: Shape estimation using polarization and shading from two views. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2001–2017 (2007)CrossRefGoogle Scholar
  6. 6.
    Atkinson, G.A., Hancock, E.R.: Surface reconstruction using polarization and photometric stereo. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 466–473. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74272-2_58CrossRefGoogle Scholar
  7. 7.
    Ba, Y., Chen, R., Wang, Y., Yan, L., Shi, B., Kadambi, A.: Physics-based neural networks for shape from polarization. arXiv preprint arXiv:1903.10210 (2019)
  8. 8.
    Baek, S.H., Jeon, D.S., Tong, X., Kim, M.H.: Simultaneous acquisition of polarimetric svbrdf and normals. ACM Trans. Graph. 37(6), 1–4 (2018)CrossRefGoogle Scholar
  9. 9.
    Bagher, M.M., Soler, C., Holzschuch, N.: Accurate fitting of measured reflectances using a shifted gamma micro-facet distribution. In: Computer Graphics Forum, vol. 31, pp. 1509–1518. Wiley Online Library (2012)Google Scholar
  10. 10.
    Blender: Suzanne. https://www.blender.org/. Accessed 15 Nov 2019
  11. 11.
    Chen, L., Zheng, Y., Subpa-Asa, A., Sato, I.: Polarimetric three-view geometry. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36 (2018)Google Scholar
  12. 12.
    Collett, E.: Field Guide to Polarization. Field Guide Series, SPIE Press (2005), https://books.google.co.jp/books?id=5lJwcCsLbLsC
  13. 13.
    Cui, Z., Gu, J., Shi, B., Tan, P., Kautz, J.: Polarimetric multi-view stereo. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1558–1567 (2017)Google Scholar
  14. 14.
    Cui, Z., Larsson, V., Pollefeys, M.: Polarimetric relative pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2671–2680 (2019)Google Scholar
  15. 15.
    Hyde Iv, M., Schmidt, J., Havrilla, M.: A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces. Opt. Exp. 17(24), 22138–22153 (2009)CrossRefGoogle Scholar
  16. 16.
    Kadambi, A., Taamazyan, V., Shi, B., Raskar, R.: Polarized 3D: high-quality depth sensing with polarization cues. In: IEEE International Conference on Computer Vision, pp. 3370–3378 (2015)Google Scholar
  17. 17.
    Logothetis, F., Mecca, R., Sgallari, F., Cipolla, R.: A differential approach to shape from polarisation: a level-set characterisation. Int. J. Comput. Vis. 127(11–12), 1680–1693 (2019)CrossRefGoogle Scholar
  18. 18.
    Mahmoud, A.H., El-Melegy, M.T., Farag, A.A.: Direct method for shape recovery from polarization and shading. In: IEEE International Conference on Image Processing, pp. 1769–1772. IEEE (2012)Google Scholar
  19. 19.
    Miyazaki, D., Kagesawa, M., Ikeuchi, K.: Transparent surface modeling from a pair of polarization images. IEEE Trans. Pattern Anal. Mach. Intell. 1, 73–82 (2004)CrossRefGoogle Scholar
  20. 20.
    Miyazaki, D., Tan, R.T., Hara, K., Ikeuchi, K.: Polarization-based inverse rendering from a single view. In: IEEE International Conference on Computer Vision, p. 982. IEEE (2003)Google Scholar
  21. 21.
    Nayar, S.K., Fang, X.S., Boult, T.: Separation of reflection components using color and polarization. Int. J. Comput. Vis. 21(3), 163–186 (1997)CrossRefGoogle Scholar
  22. 22.
    Ngo Thanh, T., Nagahara, H., Taniguchi, R.I.: Shape and light directions from shading and polarization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2310–2318 (2015)Google Scholar
  23. 23.
    Priest, R.G., Meier, S.R.: Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces. Opt. Eng. 41, 988–993 (2002)CrossRefGoogle Scholar
  24. 24.
    Rahmann, S., Canterakis, N.: Reconstruction of specular surfaces using polarization imaging. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-I. IEEE (2001)Google Scholar
  25. 25.
    Renhorn, I.G., Boreman, G.D.: Developing a generalized BRDF model from experimental data. Opt. Exp. 26(13), 17099–17114 (2018)CrossRefGoogle Scholar
  26. 26.
    Renhorn, I.G., Hallberg, T., Bergström, D., Boreman, G.D.: Four-parameter model for polarization-resolved rough-surface BRDF. Opt. Exp. 19(2), 1027–1036 (2011)CrossRefGoogle Scholar
  27. 27.
    Renhorn, I.G., Hallberg, T., Boreman, G.D.: Efficient polarimetric BRDF model. Opt. Exp. 23(24), 31253–31273 (2015)CrossRefGoogle Scholar
  28. 28.
    Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 325–332 (2001)Google Scholar
  29. 29.
    Smith, W.A., Ramamoorthi, R., Tozza, S.: Height-from-polarisation with unknown lighting or albedo. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2875–2888 (2018)CrossRefGoogle Scholar
  30. 30.
    Taamazyan, V., Kadambi, A., Raskar, R.: Shape from mixed polarization. arXiv preprint arXiv:1605.02066 (2016)
  31. 31.
    Thilak, V., Voelz, D.G., Creusere, C.D.: Polarization-based index of refraction and reflection angle estimation for remote sensing applications. Appl. Opt. 46(30), 7527–7536 (2007)CrossRefGoogle Scholar
  32. 32.
    Turk, G., Levoy, M.: The stanford bunny. http://graphics.stanford.edu/data/3Dscanrep/. Accessed 15 Nov 2019
  33. 33.
    Walter, B., Marschner, S.R., Li, H., Torrance, K.E.: Microfacet models for refraction through rough surfaces. In: Eurographics conference on Rendering Techniques, pp. 195–206. Eurographics Association (2007)Google Scholar
  34. 34.
    Wang, K., Zhu, J.P., Liu, H.: Degree of polarization based on the three-component PBRDF model for metallic materials. Chin. Phys. B 26(2), 024210 (2017)CrossRefGoogle Scholar
  35. 35.
    Wolff, L.B.: Polarization-based material classification from specular reflection. IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990)CrossRefGoogle Scholar
  36. 36.
    Wolff, L.B., Boult, T.E.: Constraining object features using a polarization reflectance model. IEEE Trans. Pattern Anal. Mach. Intell. 7, 635–657 (1991)CrossRefGoogle Scholar
  37. 37.
    Yamazaki, T., et al.: Four-directional pixel-wise polarization CMOS image sensor using air-gap wire grid on 2.5-\(\mu \)m back-illuminated pixels. In: IEEE International Electron Devices Meeting, pp. 8–17. IEEE (2016)Google Scholar
  38. 38.
    Yang, L., Tan, F., Li, A., Cui, Z., Furukawa, Y., Tan, P.: Polarimetric dense monocular slam. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3857–3866 (2018)Google Scholar
  39. 39.
    Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5287–5295 (2017)Google Scholar
  40. 40.
    Zhang, Y., Zhang, Y., Zhao, H., Wang, Z.: Improved atmospheric effects elimination method for PBRDF models of painted surfaces. Opt. Exp. 25(14), 16458–16475 (2017)CrossRefGoogle Scholar
  41. 41.
    Zhu, D., Smith, W.A.: Depth from a polarisation + rgb stereo pair. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sony CorporationTokyoJapan

Personalised recommendations