Abstract
Existing Particle Imaging Velocimetry techniques require the use of high-speed cameras to reconstruct time-resolved fluid flows. These cameras provide high-resolution images at high frame rates, which generates bandwidth and memory issues. By capturing only changes in the brightness with a very low latency and at low data rate, event-based cameras have the ability to tackle such issues. In this paper, we present a new framework that retrieves dense 3D measurements of the fluid velocity field using a pair of event-based cameras. First, we track particles inside the two event sequences in order to estimate their 2D velocity in the two sequences of images. A stereo-matching step is then performed to retrieve their 3D positions. These intermediate outputs are incorporated into an optimization framework that also includes physically plausible regularizers, in order to retrieve the 3D velocity field. Extensive experiments on both simulated and real data demonstrate the efficacy of our approach.
Keywords
- Fluid imaging
- Event-based camera
- Particle Imaging Velocimetry
- Stereo-PTV
- Optimization
This is a preview of subscription content, access via your institution.
Buying options







Notes
- 1.
The code is available on: https://github.com/vccimaging/StereoEventPTV.
References
Adrian, R.J., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press, Cambridge (2011)
Aguirre-Pablo, A.A., Aljedaani, A.B., Xiong, J., Idoughi, R., Heidrich, W., Thoroddsen, S.T.: Single-camera 3D PTV using particle intensities and structured light. Exp. Fluids 60(2), 1–13 (2019). https://doi.org/10.1007/s00348-018-2660-7
Álvarez, L., et al.: A new energy-based method for 3D motion estimation of incompressible PIV flows. Comput. Vis. Image Underst. 113(7), 802–810 (2009)
Atcheson, B., et al.: Time-resolved 3D capture of non-stationary gas flows. ACM Trans. Graph. 27(5), 132 (2008)
Bardow, P., Davison, A.J., Leutenegger, S.: Simultaneous optical flow and intensity estimation from an event camera. In: Proceedings of the CVPR, pp. 884–892 (2016)
Belden, J., Truscott, T.T., Axiak, M.C., Techet, A.H.: Three-dimensional synthetic aperture particle image velocimetry. Meas. Sci. Technol. 21(12), 125403 (2010)
Benosman, R., Clercq, C., Lagorce, X., Ieng, S.H., Bartolozzi, C.: Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 407–417 (2013)
Berner, R., Brandli, C., Yang, M., Liu, S.C., Delbruck, T.: A 240 \(\times \) 180 10mW 12\(\upmu \)s latency sparse-output vision sensor for mobile applications. In: 2013 Symposium on VLSI Circuits, pp. C186–C187. IEEE (2013)
Berthelon, X., Chenegros, G., Libert, N., Sahel, J.A., Grieve, K., Benosman, R.: Full-field OCT technique for high speed event-based optical flow and particle tracking. Opt. Express 25(11), 12611–12621 (2017)
Biswas, S.: Schlieren image velocimetry (SIV). Physics of Turbulent Jet Ignition. ST, pp. 35–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76243-2_3
Borer, D., Delbruck, T., Rösgen, T.: Three-dimensional particle tracking velocimetry using dynamic vision sensors. Exp. Fluids 58(12), 1–7 (2017). https://doi.org/10.1007/s00348-017-2452-5
Brücker, C.: 3D scanning PIV applied to an air flow in a motored engine using digital high-speed video. Meas. Sci. Technol. 8(12), 1480 (1997)
Dabiri, D., Pecora, C.: Particle Tracking Velocimetry. IOP Publishing, Bristol (2020)
Delbruck, T., Lang, M.: Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor. Front. Neurosci. 7, 223 (2013)
Drazen, D., Lichtsteiner, P., Häfliger, P., Delbrück, T., Jensen, A.: Toward real-time particle tracking using an event-based dynamic vision sensor. Exp. Fluids 51(5), 1465 (2011)
Eckert, M.L., Heidrich, W., Thürey, N.: Coupled fluid density and motion from single views. In: CGF, vol. 37, pp. 47–58. Wiley (2018)
Eckert, M.L., Um, K., Thuerey, N.: ScalarFlow: a large-scale volumetric data set of real-world scalar transport flows for computer animation and machine learning. ACM Trans. Graph. 38(6), 1–16 (2019)
Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)
Fahringer, T.W., Lynch, K.P., Thurow, B.S.: Volumetric particle image velocimetry with a single plenoptic camera. Meas. Sci. Technol. 26(11), 115201 (2015)
Gallego, G., et al.: Event-based vision: a survey. arXiv preprint arXiv:1904.08405 (2019)
Gesemann, S., Huhn, F., Schanz, D., Schröder, A.: From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties. In: 18th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, pp. 4–7 (2016)
Glover, A., Bartolozzi, C.: Event-driven ball detection and gaze fixation in clutter. In: Proceedings of the IROS, pp. 2203–2208. IEEE (2016)
Gregson, J., Ihrke, I., Thuerey, N., Heidrich, W.: From capture to simulation: connecting forward and inverse problems in fluids. ACM Trans. Graph. 33(4), 139 (2014)
Gregson, J., Krimerman, M., Hullin, M.B., Heidrich, W.: Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graph. 31(4), 52:1–52:10 (2012)
Gu, J., Nayar, S.K., Grinspun, E., Belhumeur, P.N., Ramamoorthi, R.: Compressive structured light for recovering inhomogeneous participating media. IEEE Trans. PAMI 35(3), 1 (2012)
Hasinoff, S.W., Kutulakos, K.N.: Photo-consistent reconstruction of semitransparent scenes by density-sheet decomposition. IEEE Trans. PAMI 29(5), 870–885 (2007)
Hawkins, T., Einarsson, P., Debevec, P.: Acquisition of time-varying participating media. Technical report, University of Southern California Marina del Rey CA Institute for Creative (2005)
Heitz, D., Mémin, E., Schnörr, C.: Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids 48(3), 369–393 (2010). https://doi.org/10.1007/s00348-009-0778-3
Hinsch, K.D.: Holographic particle image velocimetry. Meas. Sci. Technol. 13(7), R61 (2002)
Hofstatter, M., Schön, P., Posch, C.: A SPARC-compatible general purpose address-event processor with 20-bit l0ns-resolution asynchronous sensor data interface in 0.18 \(\upmu \)m CMOS. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 4229–4232. IEEE (2010)
Hori, T., Sakakibara, J.: High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids. Meas. Sci. Technol. 15(6), 1067 (2004)
Ihrke, I., Goidluecke, B., Magnor, M.: Reconstructing the geometry of flowing water. In: Proceedings of the ICCV, vol. 2, pp. 1055–1060. IEEE (2005)
Ihrke, I., Magnor, M.: Image-based tomographic reconstruction of flames. In: Proceedings of the SCA, pp. 365–373 (2004)
Ji, Y., Ye, J., Yu, J.: Reconstructing gas flows using light-path approximation. In: Proceedings of the CVPR, pp. 2507–2514 (2013)
Jonassen, D.R., Settles, G.S., Tronosky, M.D.: Schlieren “PIV” for turbulent flows. Opt. Lasers Eng. 44(3–4), 190–207 (2006)
Knutsen, A.N., Lawson, J.M., Dawson, J.R., Worth, N.A.: A laser sheet self-calibration method for scanning PIV. Exp. Fluids 58(10), 1–13 (2017). https://doi.org/10.1007/s00348-017-2428-5
Lasinger, K., Vogel, C., Pock, T., Schindler, K.: 3D fluid flow estimation with integrated particle reconstruction. Int. J. Comput. Vis. 128(4), 1012–1027 (2020). https://doi.org/10.1007/s11263-019-01261-6
Lasinger, K., Vogel, C., Schindler, K.: Volumetric flow estimation for incompressible fluids using the stationary stokes equations. In: Proceedings of the ICCV, pp. 2565–2573 (2017)
Maas, H., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2), 133–146 (1993). https://doi.org/10.1007/BF00223406
Machicoane, N., Aliseda, A., Volk, R., Bourgoin, M.: A simplified and versatile calibration method for multi-camera optical systems in 3D particle imaging. Rev. Sci. Instrum. 90(3), 035112 (2019)
Mahowald, M.: VLSI analogs of neuronal visual processing: a synthesis of form and function. Ph.D. thesis, California Institute of Technology Pasadena (1992)
Mei, D., Ding, J., Shi, S., New, T.H., Soria, J.: High resolution volumetric dual-camera light-field PIV. Exp. Fluids 60(8), 1–21 (2019). https://doi.org/10.1007/s00348-019-2781-7
Meng, H., Hussain, F.: Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence. Fluid Dyn. Res. 8(1–4), 33 (1991)
Morris, N.J., Kutulakos, K.N.: Dynamic refraction stereo. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1518–1531 (2011)
Ni, Z., Pacoret, C., Benosman, R., Ieng, S., Régnier, S.: Asynchronous event-based high speed vision for microparticle tracking. J. Microsc. 245(3), 236–244 (2012)
Okamoto, K., Nishio, S., Saga, T., Kobayashi, T.: Standard images for particle-image velocimetry. Meas. Sci. Technol. 11(6), 685 (2000)
Pereira, F., Gharib, M., Dabiri, D., Modarress, D.: Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp. Fluids 29(1), S078–S084 (2000). https://doi.org/10.1007/s003480070010
Pereira, F., Gharib, M.: Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas. Sci. Technol. 13(5), 683 (2002)
Posch, C., Matolin, D., Wohlgenannt, R.: A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid-State Circuits 46(1), 259–275 (2010)
Prasad, A.K.: Stereoscopic particle image velocimetry. Exp. Fluids 29(2), 103–116 (2000)
Raffel, M.: Background-oriented schlieren (BOS) techniques. Exp. Fluids 56(3), 1–17 (2015). https://doi.org/10.1007/s00348-015-1927-5
Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T., Kompenhans, J.: Particle Image Velocimetry. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68852-7
Rebecq, H., Gallego, G., Mueggler, E., Scaramuzza, D.: EMVS: event-based multi-view stereo-3D reconstruction with an event camera in real-time. Int. J. Comput. Vis. 126(12), 1394–1414 (2018)
Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event camera simulator. In: Conference on Robot Learning, pp. 969–982 (2018)
Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: High speed and high dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Richard, H., Raffel, M.: Principle and applications of the background oriented schlieren (BOS) method. Meas. Sci. Technol. 12(9), 1576 (2001)
Rogister, P., Benosman, R., Ieng, S.H., Lichtsteiner, P., Delbruck, T.: Asynchronous event-based binocular stereo matching. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 347–353 (2011)
Ruhnau, P., Guetter, C., Putze, T., Schnörr, C.: A variational approach for particle tracking velocimetry. Meas. Sci. Technol. 16(7), 1449 (2005)
Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: an imaging-based control approach. Exp. Fluids 42(1), 61–78 (2007). https://doi.org/10.1007/s00348-006-0220-z
Ruhnau, P., Stahl, A., Schnörr, C.: On-line variational estimation of dynamical fluid flows with physics-based spatio-temporal regularization. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 444–454. Springer, Heidelberg (2006). https://doi.org/10.1007/11861898_45
Scarano, F.: Tomographic PIV: principles and practice. Meas. Sci. Technol. 24(1), 012001 (2012)
Schanz, D., Gesemann, S., Schröder, A.: Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57(5), 1–27 (2016). https://doi.org/10.1007/s00348-016-2157-1
Schneiders, J.F.G., Scarano, F.: Dense velocity reconstruction from tomographic PTV with material derivatives. Exp. Fluids 57(9), 1–22 (2016). https://doi.org/10.1007/s00348-016-2225-6
Serrano-Gotarredona, T., Linares-Barranco, B.: A 128 \(\times \) 128 1.5% contrast sensitivity 0.9% FPN 3 \(\upmu \)s latency 4 mW asynchronous frame-free dynamic vision sensor using transimpedance preamplifiers. IEEE J. Solid-State Circuits 48(3), 827–838 (2013)
Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128 (1999)
Tan, Z.P., Thurow, B.S.: Time-resolved 3D flow-measurement with a single plenoptic-camera. In: AIAA Scitech 2019 Forum, p. 0267 (2019)
Tropea, C., Yarin, A.L.: Springer Handbook of Experimental Fluid Mechanics. SHB. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-30299-5
Wang, H., Liao, M., Zhang, Q., Yang, R., Turk, G.: Physically guided liquid surface modeling from videos. ACM Trans. Graph. (TOG) 28(3), 1–11 (2009)
Xiong, J., Fu, Q., Idoughi, R., Heidrich, W.: Reconfigurable rainbow PIV for 3D flow measurement. In: Proceedings of the ICCP, pp. 1–9. IEEE (2018)
Xiong, J., et al.: Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging. ACM Trans. Graph. 36(4), 36 (2017)
Yoon, S.Y., Kim, K.C.: 3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept. Meas. Sci. Technol. 17(11), 2897 (2006)
Zang, G., et al.: TomoFluid: reconstructing dynamic fluid from sparse view videos. In: Proceedings of the CVPR, pp. 1870–1879 (2020)
Zhu, A.Z., Atanasov, N., Daniilidis, K.: Event-based feature tracking with probabilistic data association. In: 2017 IEEE International Conference on Robotics and Automation (ICRA) pp. 4465–4470. IEEE (2017)
Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: EV-FlowNet: self-supervised optical flow estimation for event-based cameras. arXiv preprint arXiv:1802.06898 (2018)
Zihao Zhu, A., Atanasov, N., Daniilidis, K.: Event-based visual inertial odometry. In: Proceedings of the CVPR, pp. 5391–5399 (2017)
Acknowledgments
This work was supported by King Abdullah University of Science and Technology as part of VCC Center Competitive Funding. The authors would like to thank the anonymous reviewers for their valuable comments. We thank Hadi Amata for his help in the design of the hexagonal tank and the camera extension tubes. We also thank Congli Wang for helping in the use of the event cameras.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 86158 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Idoughi, R., Heidrich, W. (2020). Stereo Event-Based Particle Tracking Velocimetry for 3D Fluid Flow Reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12374. Springer, Cham. https://doi.org/10.1007/978-3-030-58526-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-58526-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58525-9
Online ISBN: 978-3-030-58526-6
eBook Packages: Computer ScienceComputer Science (R0)