Skip to main content

Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12374))

Included in the following conference series:

Abstract

Efficiently reconstructing complex and intricate surfaces at scale is a long-standing goal in machine perception. To address this problem we introduce Deep Local Shapes (DeepLS), a deep shape representation that enables encoding and reconstruction of high-quality 3D shapes without prohibitive memory requirements. DeepLS replaces the dense volumetric signed distance function (SDF) representation used in traditional surface reconstruction systems with a set of locally learned continuous SDFs defined by a neural network, inspired by recent work such as DeepSDF. Unlike DeepSDF, which represents an object-level SDF with a neural network and a single latent code, we store a grid of independent latent codes, each responsible for storing information about surfaces in a small local neighborhood. This decomposition of scenes into local shapes simplifies the prior distribution that the network must learn, and also enables efficient inference. We demonstrate the effectiveness and generalization power of DeepLS by showing object shape encoding and reconstructions of full scenes, where DeepLS delivers high compression, accuracy, and local shape completion.

R. Chabra and J. E. Lenssen—Work performed during an internship at Facebook Reality Labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 3D Warehouse. https://3dwarehouse.sketchup.com/

  2. Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/

  3. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds (2017). arXiv preprint arXiv:1707.02392

  4. Aroudj, S., Seemann, P., Langguth, F., Guthe, S., Goesele, M.: Visibility-consistent thin surface reconstruction using multi-scale kernels. ACM Trans. Graph. (TOG) 36(6), 187 (2017)

    Article  Google Scholar 

  5. Ben-Hamu, H., Maron, H., Kezurer, I., Avineri, G., Lipman, Y.: Multi-chart generative surface modeling. In: SIGGRAPH Asia 2018 Technical Papers, p. 215. ACM (2018)

    Google Scholar 

  6. Blinn, J.F.: A generalization of algebraic surface drawing. ACM Trans. Graph. (TOG) 1(3), 235–256 (1982)

    Article  Google Scholar 

  7. Calakli, F., Taubin, G.: Ssd: smooth signed distance surface reconstruction. In: Computer Graphics Forum. vol. 30, pp. 1993–2002. Wiley Online Library (2011)

    Google Scholar 

  8. Carr, J.C., et al.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 67–76. ACM (2001)

    Google Scholar 

  9. Chabra, R., Straub, J., Sweeney, C., Newcombe, R., Fuchs, H.: Stereodrnet: dilated residual stereonet. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11786–11795 (2019)

    Google Scholar 

  10. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  11. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  12. Curless, B., Levoy, M.: A volumetric method for building complex models from range images (1996)

    Google Scholar 

  13. Dai, A., Nießner, M.: Scan2mesh: from unstructured range scans to 3D meshes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5574–5583 (2019)

    Google Scholar 

  14. Dai, A., Ruizhongtai Qi, C., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5868–5877 (2017)

    Google Scholar 

  15. Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.: Cvxnets: learnable convex decomposition (2019)

    Google Scholar 

  16. Fuhrmann, S., Goesele, M.: Floating scale surface reconstruction. ACM Trans. Graph. (ToG) 33(4), 46 (2014)

    Article  Google Scholar 

  17. Gal, R., Shamir, A., Hassner, T., Pauly, M., Cohen-Or, D.: Surface reconstruction using local shape priors. In: Symposium on Geometry Processing, No. CONF, pp. 253–262 (2007)

    Google Scholar 

  18. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Deep structured implicit functions (2019). arXiv preprint arXiv:1912.06126

  19. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learning shape templates with structured implicit functions (2019). arXiv preprint arXiv:1904.06447

  20. Gkioxari, G., Malik, J., Johnson, J.: Mesh r-cnn (2019). arXiv preprint arXiv:1906.02739

  21. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: Atlasnet: apapier-m\(\backslash \) ach\(\backslash \) approach to learning 3D surfacegeneration (2018). arXiv preprint arXiv:1802.05384

  22. Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: IEEE International Conference on Robotics and Automation, ICRA. Hong Kong, China (2014)

    Google Scholar 

  23. Häne, C., Tulsiani, S., Malik, J.: Hierarchical surface prediction for 3D object reconstruction. In: 2017 International Conference on 3D Vision (3DV), pp. 412–420. IEEE (2017)

    Google Scholar 

  24. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 71–78 (1992)

    Google Scholar 

  25. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  26. Jancosek, M., Pajdla, T.: Multi-view reconstruction preserving weakly-supported surfaces. In: CVPR 2011, pp. 3121–3128. IEEE (2011)

    Google Scholar 

  27. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T.: Local implicit grid representations for 3D scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  28. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, vol. 7 (2006)

    Google Scholar 

  29. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. (ToG) 32(3), 1–13 (2013)

    Article  Google Scholar 

  30. Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T., Kolb, A.: Real-time 3D reconstruction in dynamic scenes using point-based fusion. In: 2013 International Conference on 3D Vision-3DV 2013, pp. 1–8. IEEE (2013)

    Google Scholar 

  31. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE Computer Society (2007)

    Google Scholar 

  32. Labatut, P., Pons, J.P., Keriven, R.: Robust and efficient surface reconstruction from range data. In: Computer Graphics Forum, vol. 28, pp. 2275–2290. Wiley Online Library (2009)

    Google Scholar 

  33. Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: learning explicit surface representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2916–2925 (2018)

    Google Scholar 

  34. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  35. Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.: Deep level sets: implicit surface representations for 3D shape inference (2019). arXiv preprint arXiv:1901.06802

  36. Newcombe, R.A., Davison, A.J.: Live dense reconstruction with a single moving camera. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1498–1505. IEEE (2010)

    Google Scholar 

  37. Newcombe, R.A., et al.: Kinectfusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136. IEEE (2011)

    Google Scholar 

  38. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. In: Acm Siggraph 2005 Courses, pp. 173-es (2005)

    Google Scholar 

  39. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation (2019). arXiv preprint arXiv:1901.05103

  40. Pfister, H., Zwicker, M., Van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  41. Ricao Canelhas, D., Schaffernicht, E., Stoyanov, T., Lilienthal, A., Davison, A.: Compressed voxel-based mapping using unsupervised learning. Robotics 6(3), 15 (2017)

    Article  Google Scholar 

  42. Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  43. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu: pixel-aligned implicit function for high-resolution clothed human digitization (2019). arXiv preprint arXiv:1905.05172

  44. Sinha, A., Bai, J., Ramani, K.: Deep learning 3D shape surfaces using geometry images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 223–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_14

    Chapter  Google Scholar 

  45. Straub, J., et al.: The Replica dataset: a digital replica of indoor spaces (2019). arXiv preprint arXiv:1906.05797

  46. Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15986-2_2

    Chapter  Google Scholar 

  47. Stutz, D., Geiger, A.: Learning 3D shape completion from laser scan data with weak supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1955–1964 (2018)

    Google Scholar 

  48. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2088–2096 (2017)

    Google Scholar 

  49. Ummenhofer, B., Brox, T.: Global, dense multiscale reconstruction for a billion points. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1341–1349 (2015)

    Google Scholar 

  50. Whelan, T., et al.: Reconstructing scenes with mirror and glass surfaces. ACM Trans. Graph. (TOG) 37(4), 102 (2018)

    Article  Google Scholar 

  51. Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., Davison, A.: Elasticfusion: Dense slam without a pose graph. Robotics: Science and Systems (2015)

    Google Scholar 

  52. Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., Panozzo, D.: Deep geometric prior for surface reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10130–10139 (2019)

    Google Scholar 

  53. Wu, Z., et al.: 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  54. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: Disn: deep implicit surface network for high-quality single-view 3D reconstruction (2019). arXiv preprint arXiv:1905.10711

  55. Yang, Y., Feng, C., Shen, Y., Tian, D.: Foldingnet: interpretable unsupervised learning on 3D point clouds (2017). arXiv preprint arXiv:1712.07262

  56. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: Pcn: point completion network. In: 2018 International Conference on 3D Vision (3DV), pp. 728–737. IEEE (2018)

    Google Scholar 

  57. Zhou, Q.Y., Koltun, V.: Dense scene reconstruction with points of interest. ACM Trans. Graph. (ToG) 32(4), 1–8 (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan Chabra .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 37588 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chabra, R. et al. (2020). Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12374. Springer, Cham. https://doi.org/10.1007/978-3-030-58526-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58526-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58525-9

  • Online ISBN: 978-3-030-58526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics