https://yanweifu.github.io/FG_NET_data
http://trillionpairs.deepglint.com/overview
Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)
Google Scholar
Amini, A., Soleimany, A., Schwarting, W., Bhatia, S., Rus, D.: Uncovering and mitigating algorithmic bias through learned latent structure. In: AAAI/ACM Conference on AI, Ethics, and Society (2019)
Google Scholar
Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In: Advances in Neural Information Processing Systems, pp. 4349–4357 (2016)
Google Scholar
Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. arXiv preprint arXiv:1906.07413 (2019)
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age. In: IEEE International Conference on Automatic Face & Gesture Recognition. IEEE (2018)
Google Scholar
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
CrossRef
Google Scholar
Chen, B.C., Chen, C.S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: ECCV (2014)
Google Scholar
Cheng, J., Li, Y., Wang, J., Yu, L., Wang, S.: Exploiting effective facial patches for robust gender recognition. Tsinghua Sci. Technol. 24(3), 333–345 (2019)
CrossRef
Google Scholar
Cook, C.M., Howard, J.J., Sirotin, Y.B., Tipton, J.L., Vemury, A.R.: Demographic effects in facial recognition and their dependence on image acquisition: an evaluation of eleven commercial systems. IEEE Trans. Biometrics Behav. Identity Sci. 1, 32–41 (2019)
CrossRef
Google Scholar
Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR (2019)
Google Scholar
Deb, D., Best-Rowden, L., Jain, A.K.: Face recognition performance under aging. In: CVPRW (2017)
Google Scholar
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR (2019)
Google Scholar
Dietterich, T.G., Kong, E.B.: Machine learning bias, statistical bias, and statistical variance of decision tree algorithms. Tech. rep. (1995)
Google Scholar
Drummond, C., Holte, R.C., et al.: C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In: Workshop on Learning from Imbalanced Datasets II. Citeseer (2003)
Google Scholar
Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: The 22nd ACM SIGSAC (2015)
Google Scholar
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
Google Scholar
Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6
CrossRef
Google Scholar
Han, H., A, K.J., Shan, S., Chen, X.: Heterogeneous face attribute estimation: a deep multi-task learning approach. IEEE Trans. Pattern Anal. Mach. Intelli. PP(99), 1–1 (2017)
Google Scholar
Hayat, M., Khan, S., Zamir, W., Shen, J., Shao, L.: Max-margin class imbalanced learning with Gaussian affinity. arXiv preprint arXiv:1901.07711 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Google Scholar
Howard, J., Sirotin, Y., Vemury, A.: The effect of broad and specific demographic homogeneity on the imposter distributions and false match rates in face recognition algorithm performance. In: IEEE BTAS (2019)
Google Scholar
Huang, C., Li, Y., Chen, C.L., Tang, X.: Deep imbalanced learning for face recognition and attribute prediction. IEEE Trans Pattern Anal. Mach. Intell. (2019)
Google Scholar
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2008)
Google Scholar
Jourabloo, A., Yin, X., Liu, X.: Attribute preserved face de-identification. In: ICB (2015)
Google Scholar
Khan, S., Hayat, M., Zamir, S.W., Shen, J., Shao, L.: Striking the right balance with uncertainty. In: CVPR (2019)
Google Scholar
Kim, H., Mnih, A.: Disentangling by factorising. arXiv preprint arXiv:1802.05983 (2018)
Klare, B.F., Burge, M.J., Klontz, J.C., Bruegge, R.W.V., Jain, A.K.: Face recognition performance: Role of demographic information. IEEE Trans. Inform. Forensics Secur. 7(6), 1789–1801 (2012)
CrossRef
Google Scholar
Klare, B.F., et al.: Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. In: CVPR (2015)
Google Scholar
Liu, F., Zeng, D., Zhao, Q., Liu, X.: Disentangling features in 3D face shapes for joint face reconstruction and recognition. In: CVPR (2018)
Google Scholar
Liu, Y., Wang, Z., Jin, H., Wassell, I.: Multi-task adversarial network for disentangled feature learning. In: CVPR (2018)
Google Scholar
Liu, Y.H., Chen, Y.T.: Face recognition using total margin-based adaptive fuzzy support vector machines. IEEE Trans. Neural Networks 18(1), 178–192 (2007)
CrossRef
Google Scholar
Liu, Y., Wei, F., Shao, J., Sheng, L., Yan, J., Wang, X.: Exploring disentangled feature representation beyond face identification. In: CVPR (2018)
Google Scholar
Locatello, F., Bauer, S., Lucic, M., Gelly, S., Schölkopf, B., Bachem, O.: Challenging common assumptions in the unsupervised learning of disentangled representations. arXiv preprint arXiv:1811.12359 (2018)
Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: NIPS (2018)
Google Scholar
Maze, B., et al.: Iarpa janus benchmark-c: face dataset and protocol. In: 2018 ICB (2018)
Google Scholar
Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: CVPRW (2017)
Google Scholar
Mullick, S.S., Datta, S., Das, S.: Generative adversarial minority oversampling. arXiv preprint arXiv:1903.09730 (2019)
Narayanaswamy, S., et al.: Learning disentangled representations with semi-supervised deep generative models. In: NIPS (2017)
Google Scholar
Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple output CNN for age estimation. In: CVPR (2016)
Google Scholar
Patrick Grother, M.N., Hanaoka, K.: Face recognition vendor test (FRVT) part 3: demographic effects. Tech. rep., National Institute of Standards and Technology (2019)
Google Scholar
Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. IJCV 126(2–4), 144–157 (2018)
MathSciNet
CrossRef
Google Scholar
Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Comput. 4(6), 863–879 (1992)
CrossRef
Google Scholar
Setty, S., et al.: Indian movie face database: a benchmark for face recognition under wide variations. In: NCVPRIPG (2013)
Google Scholar
Shi, Y., Jain, A.K., Kalka, N.D.: Probabilistic face embeddings. arXiv preprint arXiv:1904.09658 (2019)
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-level performance in face verification. In: CVPR (2014)
Google Scholar
Tao, C., Lv, F., Duan, L., Wu, M.: Minimax entropy network: learning category-invariant features for domain adaptation. arXiv preprint arXiv:1904.09601 (2019)
Torralba, A., Efros, A.A., et al.: Unbiased look at dataset bias. In: CVPR (2011)
Google Scholar
Tran, L., Yin, X., Liu, X.: Disentangled representation learning GAN for pose-invariant face recognition. In: CVPR (2017)
Google Scholar
Tran, L., Yin, X., Liu, X.: Representation learning by rotating your faces. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 3007–3021 (2019)
CrossRef
Google Scholar
Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: CVPR (2015)
Google Scholar
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)
Google Scholar
Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Process. Lett. 25(7), 926–930 (2018)
CrossRef
Google Scholar
Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: CVPR (2018)
Google Scholar
Wang, M., Deng, W.: Mitigating bias in face recognition using skewness-aware reinforcement learning. In: CVPR (2020)
Google Scholar
Wang, M., Deng, W., Hu, J., Tao, X., Huang, Y.: Racial faces in the wild: reducing racial bias by information maximization adaptation network. In: ICCV (2019)
Google Scholar
Wang, P., Su, F., Zhao, Z., Guo, Y., Zhao, Y., Zhuang, B.: Deep class-skewed learning for face recognition. Neurocomputing 363, 35–45 (2019)
CrossRef
Google Scholar
Xie, W., Zisserman, A.: Multicolumn networks for face recognition. arXiv preprint arXiv:1807.09192 (2018)
Yin, B., Tran, L., Li, H., Shen, X., Liu, X.: Towards interpretable face recognition. In: ICCV (2019)
Google Scholar
Yin, X., Liu, X.: Multi-task convolutional neural network for pose-invariant face recognition. IEEE Trans. Image Process. 27(2), 964–975 (2017)
MathSciNet
CrossRef
Google Scholar
Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Towards large-pose face frontalization in the wild. In: ICCV (2017)
Google Scholar
Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Feature transfer learning for face recognition with under-represented data. In: CVPR (2019)
Google Scholar
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)
CrossRef
Google Scholar
Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: CVPR (2017)
Google Scholar
Zhang, Y., Zhou, Z.H.: Cost-sensitive face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1758–1769 (2009)
CrossRef
Google Scholar
Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: CVPR. IEEE (2017)
Google Scholar
Zhang, Z., et al.: Gait recognition via disentangled representation learning. In: CVPR (2019)
Google Scholar