Advertisement

HDNet: Human Depth Estimation for Multi-person Camera-Space Localization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12363)

Abstract

Current works on multi-person 3D pose estimation mainly focus on the estimation of the 3D joint locations relative to the root joint and ignore the absolute locations of each pose. In this paper, we propose the Human Depth Estimation Network (HDNet), an end-to-end framework for absolute root joint localization in the camera coordinate space. Our HDNet first estimates the 2D human pose with heatmaps of the joints. These estimated heatmaps serve as attention masks for pooling features from image regions corresponding to the target person. A skeleton-based Graph Neural Network (GNN) is utilized to propagate features among joints. We formulate the target depth regression as a bin index estimation problem, which can be transformed with a soft-argmax operation from the classification output of our HDNet. We evaluate our HDNet on the root joint localization and root-relative 3D pose estimation tasks with two benchmark datasets, i.e., Human3.6M and MuPoTS-3D. The experimental results show that we outperform the previous state-of-the-art consistently under multiple evaluation metrics. Our source code is available at: https://github.com/jiahaoLjh/HumanDepth.

Keywords

Human Depth Estimation Multi-person pose estimation Camera coordinate space 

References

  1. 1.
    Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR (2014)Google Scholar
  2. 2.
    Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: CVPR (2017)Google Scholar
  3. 3.
    Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: CVPR (2018)Google Scholar
  4. 4.
    Dabral, R., Gundavarapu, N.B., Mitra, R., Sharma, A., Ramakrishnan, G., Jain, A.: Multi-person 3D human pose estimation from monocular images. In: 3DV, pp. 405–414. IEEE (2019)Google Scholar
  5. 5.
    Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: ICCV (2017)Google Scholar
  6. 6.
    Fang, H., Xu, Y., Wang, W., Liu, X., Zhu, S.C.: Learning pose grammar to encode human body configuration for 3D pose estimation. In: AAAI (2018)Google Scholar
  7. 7.
    Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: CVPR, pp. 2002–2011 (2018)Google Scholar
  8. 8.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)Google Scholar
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)Google Scholar
  10. 10.
    Huang, S., Gong, M., Tao, D.: A coarse-fine network for keypoint localization. In: ICCV (2017)Google Scholar
  11. 11.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  12. 12.
    Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. TMAPI 36(7), 1325–1339 (2014)Google Scholar
  13. 13.
    Iqbal, U., Molchanov, P., Breuel, T., Gall, J., Kautz, J.: Hand pose estimation via latent 2.5D heatmap regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 125–143. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01252-6_8CrossRefGoogle Scholar
  14. 14.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  15. 15.
    Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)Google Scholar
  16. 16.
    Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_48CrossRefGoogle Scholar
  17. 17.
    Luvizon, D.C., Picard, D., Tabia, H.: 2D/3D pose estimation and action recognition using multitask deep learning. In: CVPR, pp. 5137–5146 (2018)Google Scholar
  18. 18.
    Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: ICCV, vol. 1, p. 5. IEEE (2017)Google Scholar
  19. 19.
    Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: 3DV. IEEE (2017)Google Scholar
  20. 20.
    Mehta, D., et al.: Single-shot multi-person 3D pose estimation from monocular RGB. In: 3DV. IEEE (2018)Google Scholar
  21. 21.
    Moon, G., Chang, J., Lee, K.M.: Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image. In: ICCV (2019)Google Scholar
  22. 22.
    Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. In: NeurIPS (2017)Google Scholar
  23. 23.
    Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46484-8_29CrossRefGoogle Scholar
  24. 24.
    Papandreou, G., Zhu, T., Chen, L.-C., Gidaris, S., Tompson, J., Murphy, K.: PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 282–299. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01264-9_17CrossRefGoogle Scholar
  25. 25.
    Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: CVPR, pp. 1263–1272. IEEE (2017)Google Scholar
  26. 26.
    Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-Net: localization-classification-regression for human pose. In: CVPR, pp. 3433–3441 (2017)Google Scholar
  27. 27.
    Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-Net++: multi-person 2D and 3D pose detection in natural images. TPAMI 42, 1146–1161 (2019)Google Scholar
  28. 28.
    Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)Google Scholar
  29. 29.
    Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01231-1_33CrossRefGoogle Scholar
  30. 30.
    Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR (2016)Google Scholar
  31. 31.
    Zanfir, A., Marinoiu, E., Zanfir, M., Popa, A.I., Sminchisescu, C.: Deep network for the integrated 3D sensing of multiple people in natural images. In: NeurIPS, pp. 8410–8419 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceNational University of SingaporeSingaporeSingapore

Personalised recommendations