Skip to main content

Learning to Learn in a Semi-supervised Fashion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12363))

Included in the following conference series:

Abstract

To address semi-supervised learning from both labeled and unlabeled data, we present a novel meta-learning scheme. We particularly consider that labeled and unlabeled data share disjoint ground truth label sets, which can be seen tasks like in person re-identification or image retrieval. Our learning scheme exploits the idea of leveraging information from labeled to unlabeled data. Instead of fitting the associated class-wise similarity scores as most meta-learning algorithms do, we propose to derive semantics-oriented similarity representations from labeled data, and transfer such representation to unlabeled ones. Thus, our strategy can be viewed as a self-supervised learning scheme, which can be applied to fully supervised learning tasks for improved performance. Our experiments on various tasks and settings confirm the effectiveness of our proposed approach and its superiority over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/KovenYu/MAR.

References

  1. Almazan, J., Gajic, B., Murray, N., Larlus, D.: Re-id done right: towards good practices for person re-identification. arXiv (2018)

    Google Scholar 

  2. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: NeurIPS (2016)

    Google Scholar 

  3. Athiwaratkun, B., Finzi, M., Izmailov, P., Wilson, A.G.: There are many consistent explanations of unlabeled data: why you should average. In: ICLR (2019)

    Google Scholar 

  4. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: MetaReg: towards domain generalization using meta-regularization. In: NeurIPS (2018)

    Google Scholar 

  5. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: Mixmatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019)

    Google Scholar 

  6. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  7. Chen, Y.C., Gao, C., Robb, E., Huang, J.B.: NAS-DIP: learning deep image prior with neural architecture search. In: Vedaldi, A., et al. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 459–476. Springer, Heidelberg (2020)

    Google Scholar 

  8. Chen, Y.-C., Huang, P.-H., Yu, L.-Y., Huang, J.-B., Yang, M.-H., Lin, Y.-Y.: Deep semantic matching with foreground detection and cycle-consistency. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 347–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_22

    Chapter  Google Scholar 

  9. Chen, Y.C., Li, Y.J., Du, X., Wang, Y.C.F.: Learning resolution-invariant deep representations for person re-identification. In: AAAI (2019)

    Google Scholar 

  10. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: CrDoCo: pixel-level domain transfer with cross-domain consistency. In: CVPR (2019)

    Google Scholar 

  11. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: Show, match and segment: joint weakly supervised learning of semantic matching and object co-segmentation. TPAMI (2020)

    Google Scholar 

  12. Chen, Y., et al.: Learning to learn without gradient descent by gradient descent. In: ICML (2017)

    Google Scholar 

  13. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-channel parts-based CNN with improved triplet loss function. In: CVPR (2016)

    Google Scholar 

  14. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (2005)

    Google Scholar 

  15. Christopher, D.M., Prabhakar, R., Hinrich, S.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  16. Chu, R., Sun, Y., Li, Y., Liu, Z., Zhang, C., Wei, Y.: Vehicle re-identification with viewpoint-aware metric learning. In: ICCV (2019)

    Google Scholar 

  17. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR (2019)

    Google Scholar 

  18. Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR (2018)

    Google Scholar 

  19. Ding, G., Zhang, S., Khan, S., Tang, Z., Zhang, J., Porikli, F.: Feature affinity based pseudo labeling for semi-supervised person re-identification. TMM 21, 2891–2902 (2019)

    Google Scholar 

  20. Dosovitskiy, A., Fischer, P., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with exemplar convolutional neural networks. TPAMI 38, 1734–1747 (2015)

    Article  Google Scholar 

  21. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR (2010)

    Google Scholar 

  22. Figueira, D., Bazzani, L., Minh, H.Q., Cristani, M., Bernardino, A., Murino, V.: Semi-supervised multi-feature learning for person re-identification. In: AVSS (2013)

    Google Scholar 

  23. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  24. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  25. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS (2005)

    Google Scholar 

  26. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)

    Google Scholar 

  27. Harwood, B., Kumar, B., Carneiro, G., Reid, I., Drummond, T., et al.: Smart mining for deep metric learning. In: ICCV (2017)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  29. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv (2017)

    Google Scholar 

  30. Hochreiter, S., Younger, A.S., Conwell, P.R.: Learning to learn using gradient descent. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 87–94. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44668-0_13

    Chapter  Google Scholar 

  31. Hoffman, J., et al.: CyCADA : cycle-consistent adversarial domain adaptation. In: ICML (2018)

    Google Scholar 

  32. Huang, Y., Xu, J., Wu, Q., Zheng, Z., Zhang, Z., Zhang, J.: Multi-pseudo regularized label for generated data in person re-identification. TIP 28, 1391–1403 (2018)

    MathSciNet  Google Scholar 

  33. Hung, W.C., Tsai, Y.H., Liou, Y.T., Lin, Y.Y., Yang, M.H.: Adversarial learning for semi-supervised semantic segmentation. In: BMVC (2018)

    Google Scholar 

  34. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Mining on manifolds: metric learning without labels. In: CVPR (2018)

    Google Scholar 

  35. Kaiser, Ł., Nachum, O., Roy, A., Bengio, S.: Learning to remember rare events. ICLR (2018)

    Google Scholar 

  36. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: ICCVW (2013)

    Google Scholar 

  37. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2017)

    Google Scholar 

  38. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICMLW (2013)

    Google Scholar 

  39. Li, J., Ma, A.J., Yuen, P.C.: Semi-supervised region metric learning for person re-identification. Int. J. Comput. Vis. 126(8), 855–874 (2018). https://doi.org/10.1007/s11263-018-1075-5

    Article  Google Scholar 

  40. Li, W., Zhu, X., Gong, S.: Person re-identification by deep joint learning of multi-loss classification. In: IJCAI (2017)

    Google Scholar 

  41. Li, Y.J., Chen, Y.C., Lin, Y.Y., Du, X., Wang, Y.C.F.: Recover and identify: a generative dual model for cross-resolution person re-identification. In: ICCV (2019)

    Google Scholar 

  42. Li, Y.J., Chen, Y.C., Lin, Y.Y., Wang, Y.C.F.: Cross-resolution adversarial dual network for person re-identification and beyond. arXiv (2020)

    Google Scholar 

  43. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: CVPR (2015)

    Google Scholar 

  44. Liu, X., Song, M., Tao, D., Zhou, X., Chen, C., Bu, J.: Semi-supervised coupled dictionary learning for person re-identification. In: CVPR (2014)

    Google Scholar 

  45. Liu, Yu., Song, G., Shao, J., Jin, X., Wang, X.: Transductive centroid projection for semi-supervised large-scale recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 72–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_5

    Chapter  Google Scholar 

  46. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR (2016)

    Google Scholar 

  47. Lu, J., Hu, J., Tan, Y.P.: Discriminative deep metric learning for face and kinship verification. TIP 26, 4269–4282 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: CVPRW (2019)

    Google Scholar 

  49. Luo, Y., Zhu, J., Li, M., Ren, Y., Zhang, B.: Smooth neighbors on teacher graphs for semi-supervised learning. In: CVPR (2018)

    Google Scholar 

  50. Martinel, N., Luca Foresti, G., Micheloni, C.: Aggregating deep pyramidal representations for person re-identification. In: CVPRW (2019)

    Google Scholar 

  51. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. TPAMI 41, 1979–1993 (2018)

    Article  Google Scholar 

  52. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies. In: ICCV (2017)

    Google Scholar 

  53. Munkhdalai, T., Yu, H.: Meta networks. In: ICML (2017)

    Google Scholar 

  54. Oh Song, H., Jegelka, S., Rathod, V., Murphy, K.: Deep metric learning via facility location. In: CVPR (2017)

    Google Scholar 

  55. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: CVPR (2016)

    Google Scholar 

  56. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 142–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_9

    Chapter  Google Scholar 

  57. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  58. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  59. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: NeurIPS (2016)

    Google Scholar 

  60. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: ICML (2016)

    Google Scholar 

  61. Saquib Sarfraz, M., Schumann, A., Eberle, A., Stiefelhagen, R.: A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking. In: CVPR (2018)

    Google Scholar 

  62. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  63. Shen, Y., Xiao, T., Li, H., Yi, S., Wang, X.: End-to-end deep kronecker-product matching for person re-identification. In: CVPR (2018)

    Google Scholar 

  64. Si, J., et al.: Dual attention matching network for context-aware feature sequence based person re-identification. In: CVPR (2018)

    Google Scholar 

  65. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS (2017)

    Google Scholar 

  66. Song, C., Huang, Y., Ouyang, W., Wang, L.: Mask-guided contrastive attention model for person re-identification. In: CVPR (2018)

    Google Scholar 

  67. Souly, N., Spampinato, C., Shah, M.: Semi supervised semantic segmentation using generative adversarial network. In: ICCV (2017)

    Google Scholar 

  68. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: NeurIPS (2014)

    Google Scholar 

  69. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: CVPR (2018)

    Google Scholar 

  70. Swets, D.L., Weng, J.J.: Using discriminant eigenfeatures for image retrieval. TPAMI 18, 831–836 (1996)

    Article  Google Scholar 

  71. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  72. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: CVPR (2014)

    Google Scholar 

  73. Tang, Z., et al.: PAMTRI: pose-aware multi-task learning for vehicle re-identification using highly randomized synthetic data. In: ICCV (2019)

    Google Scholar 

  74. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS (2017)

    Google Scholar 

  75. Tieu, K., Viola, P.: Boosting image retrieval. IJCV 56, 17–36 (2004). https://doi.org/10.1023/B:VISI.0000004830.93820.78

    Article  Google Scholar 

  76. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurIPS (2016)

    Google Scholar 

  77. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset (2011)

    Google Scholar 

  78. Wang, G., Hu, Q., Cheng, J., Hou, Z.: Semi-supervised generative adversarial hashing for image retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 491–507. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_29

    Chapter  Google Scholar 

  79. Wang, G., Yuan, Y., Chen, X., Li, J., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: ACM MM (2018)

    Google Scholar 

  80. Wang, J., Zhou, F., Wen, S., Liu, X., Lin, Y.: Deep metric learning with angular loss. In: ICCV (2017)

    Google Scholar 

  81. Wang, J., Zhu, X., Gong, S., Li, W.: Transferable joint attribute-identity deep learning for unsupervised person re-identification. In: CVPR (2018)

    Google Scholar 

  82. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search. TPAMI 34, 2393–2406 (2012)

    Article  Google Scholar 

  83. Wang, P., et al.: Vehicle re-identification in aerial imagery: dataset and approach. In: ICCV (2019)

    Google Scholar 

  84. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. JMLR (2009)

    Google Scholar 

  85. Wu, Y., Lin, Y., Dong, X., Yan, Y., Bian, W., Yang, Y.: Progressive learning for person re-identification with one example. TIP 28, 2872–2881 (2019)

    MathSciNet  MATH  Google Scholar 

  86. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  87. Xin, X., Wang, J., Xie, R., Zhou, S., Huang, W., Zheng, N.: Semi-supervised person re-identification using multi-view clustering. Pattern Recognit. 88, 285–297 (2019)

    Article  Google Scholar 

  88. Xin, X., Wu, X., Wang, Y., Wang, J.: Deep self-paced learning for semi-supervised person re-identification using multi-view self-paced clustering. In: ICIP (2019)

    Google Scholar 

  89. Xu, J., Shi, C., Qi, C., Wang, C., Xiao, B.: Unsupervised part-based weighting aggregation of deep convolutional features for image retrieval. In: AAAI (2018)

    Google Scholar 

  90. Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via invariant and spreading instance feature. In: CVPR (2019)

    Google Scholar 

  91. Yu, H.X., Zheng, W.S., Wu, A., Guo, X., Gong, S., Lai, J.H.: Unsupervised person re-identification by soft multilabel learning. In: CVPR (2019)

    Google Scholar 

  92. Zhang, J., Peng, Y.: SSDH: semi-supervised deep hashing for large scale image retrieval. TCSVT 29, 212–225 (2017)

    Google Scholar 

  93. Zhang, X., et al.: AlignedReID: surpassing human-level performance in person re-identification. arXiv (2017)

    Google Scholar 

  94. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR (2018)

    Google Scholar 

  95. Zhao, L., Li, X., Zhuang, Y., Wang, J.: Deeply-learned part-aligned representations for person re-identification. In: ICCV (2017)

    Google Scholar 

  96. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: ICCV (2015)

    Google Scholar 

  97. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. arXiv (2016)

    Google Scholar 

  98. Zheng, W., Chen, Z., Lu, J., Zhou, J.: Hardness-aware deep metric learning. In: CVPR (2019)

    Google Scholar 

  99. Zheng, Z., Zheng, L., Yang, Y.: Pedestrian alignment network for large-scale person re-identification. TCSVT 29, 3037–3045 (2018)

    Google Scholar 

  100. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: CVPR (2018)

    Google Scholar 

  101. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Acknowledgments

This paper is supported in part by the Ministry of Science and Technology (MOST) of Taiwan under grant MOST 109-2634-F-002-037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Chun Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 274 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, YC., Chou, CT., Wang, YC.F. (2020). Learning to Learn in a Semi-supervised Fashion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics