Skip to main content

Hidden Footprints: Learning Contextual Walkability from 3D Human Trails

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12363))

Included in the following conference series:

Abstract

Predicting where people can walk in a scene is important for many tasks, including autonomous driving systems and human behavior analysis. Yet learning a computational model for this purpose is challenging due to semantic ambiguity and a lack of labeled data: current datasets only tell you where people are, not where they could be. We tackle this problem by leveraging information from existing datasets, without additional labeling. We first augment the set of valid, labeled walkable regions by propagating person observations between images, utilizing 3D information to create what we call hidden footprints. However, this augmented data is still sparse. We devise a training strategy designed for such sparse labels, combining a class-balanced classification loss with a contextual adversarial loss. Using this strategy, we demonstrate a model that learns to predict a walkability map from a single image. We evaluate our model on the Waymo and Cityscapes datasets, demonstrating superior performance compared to baselines and state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  2. Caesar, H., et al.: nuscenes: A multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

  3. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  4. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Trans. Neural Netw. 20(3), 542 (2009)

    Google Scholar 

  5. Chien, J.T., Chou, C.J., Chen, D.J., Chen, H.T.: Detecting nonexistent pedestrians. In: Proceedings of International Conference on Computer Vision Workshops, pp. 182–189 (2017)

    Google Scholar 

  6. Chuang, C.Y., Li, J., Torralba, A., Fidler, S.: Learning to act properly: predicting and explaining affordances from images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 975–983 (2018)

    Google Scholar 

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  8. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes Paris look like Paris? ACM Trans. Graph. (SIGGRAPH) 31(4), 101:1–101:9 (2012)

    Google Scholar 

  9. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: surprisingly easy synthesis for instance detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1301–1310 (2017)

    Google Scholar 

  10. Fouhey, D.F., Delaitre, V., Gupta, A., Efros, A.A., Laptev, I., Sivic, J.: People watching: human actions as a cue for single view geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 732–745. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_53

    Chapter  Google Scholar 

  11. Frank, L.D., et al.: The development of a walkability index: application to the neighborhood quality of life study. Br. J. Sports Med. 44(13), 924–933 (2010)

    Article  Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  13. Gupta, A., Satkin, S., Efros, A.A., Hebert, M.: From 3D scene geometry to human workspace. In: CVPR 2011, pp. 1961–1968. IEEE (2011)

    Google Scholar 

  14. Hong, S., Yan, X., Huang, T.S., Lee, H.: Learning hierarchical semantic image manipulation through structured representations. In: Advances in Neural Information Processing Systems, pp. 2708–2718 (2018)

    Google Scholar 

  15. Huang, S., Ramanan, D.: Expecting the unexpected: training detectors for unusual pedestrians with adversarial imposters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2243–2252 (2017)

    Google Scholar 

  16. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_15

    Chapter  Google Scholar 

  17. Lalonde, J.F., Hoiem, D., Efros, A.A., Rother, C., Winn, J., Criminisi, A.: Photo clip art. ACM Trans. Graph. (TOG) 26, 3 (2007)

    Google Scholar 

  18. Lee, D., Liu, S., Gu, J., Liu, M.Y., Yang, M.H., Kautz, J.: Context-aware synthesis and placement of object instances. In: Advances in Neural Information Processing Systems, pp. 10393–10403 (2018)

    Google Scholar 

  19. Lee, D., Pfister, T., Yang, M.H.: Inserting videos into videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10061–10070 (2019)

    Google Scholar 

  20. Li, X., Liu, S., Kim, K., Wang, X., Yang, M.H., Kautz, J.: Putting humans in a scene: learning affordance in 3D indoor environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12368–12376 (2019)

    Google Scholar 

  21. Lin, C.H., Yumer, E., Wang, O., Shechtman, E., Lucey, S.: ST-GAN: spatial transformer generative adversarial networks for image compositing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9455–9464 (2018)

    Google Scholar 

  22. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  23. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  25. Ouyang, X., Cheng, Y., Jiang, Y., Li, C.L., Zhou, P.: Pedestrian-synthesis-GAN: Generating pedestrian data in real scene and beyond. arXiv preprint arXiv:1804.02047 (2018)

  26. Sun, J., Jacobs, D.W.: Seeing what is not there: learning context to determine where objects are missing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5716–5724 (2017)

    Google Scholar 

  27. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  28. Tan, F., Bernier, C., Cohen, B., Ordonez, V., Barnes, C.: Where and who? Automatic semantic-aware person composition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1519–1528. IEEE (2018)

    Google Scholar 

  29. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. CoRR p. abs/1908.07919 (2019)

    Google Scholar 

  30. Wang, X., Girdhar, R., Gupta, A.: Binge watching: scaling affordance learning from sitcoms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2596–2605 (2017)

    Google Scholar 

  31. Waymo: Waymo Open Dataset: An autonomous driving dataset (2019)

    Google Scholar 

  32. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  33. Xie, C., et al.: Image inpainting with learnable bidirectional attention maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8858–8867 (2019)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Sun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 54737 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Averbuch-Elor, H., Wang, Q., Snavely, N. (2020). Hidden Footprints: Learning Contextual Walkability from 3D Human Trails. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics