Skip to main content

Modeling Artistic Workflows for Image Generation and Editing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12363))

Included in the following conference series:

Abstract

People often create art by following an artistic workflow involving multiple stages that inform the overall design. If an artist wishes to modify an earlier decision, significant work may be required to propagate this new decision forward to the final artwork. Motivated by the above observations, we propose a generative model that follows a given artistic workflow, enabling both multi-stage image generation as well as multi-stage image editing of an existing piece of art. Furthermore, for the editing scenario, we introduce an optimization process along with learning-based regularization to ensure the edited image produced by the model closely aligns with the originally provided image. Qualitative and quantitative results on three different artistic datasets demonstrate the effectiveness of the proposed framework on both image generation and editing tasks.

H.-Y. Tseng—Work done during HY’s internship at Adobe Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/hytseng0509/ArtEditing.

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the styleGAN latent space? In: ICCV (2019)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. In: ICML (2017)

    Google Scholar 

  3. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: MetaReg: towards domain generalization using meta-regularization. In: NIPS (2018)

    Google Scholar 

  4. Bau, D., et al.: Semantic photo manipulation with a generative image prior. ACM TOG (Proc. SIGGRAPH) 38(4), 59 (2019)

    Google Scholar 

  5. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)

    Google Scholar 

  6. Chang, H., Lu, J., Yu, F., Finkelstein, A.: PairedCycleGAN: asymmetric style transfer for applying and removing makeup. In: CVPR (2018)

    Google Scholar 

  7. Chen, W., Hays, J.: SketchyGAN: towards diverse and realistic sketch to image synthesis. In: CVPR (2018)

    Google Scholar 

  8. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: NIPS (2016)

    Google Scholar 

  9. Cheng, Y.C., Lee, H.Y., Sun, M., Yang, M.H.: Controllable image synthesis via SegVAE. In: ECCV (2020)

    Google Scholar 

  10. Donahue, J., Simonyan, K.: Large scale adversarial representation learning. In: NIPS (2019)

    Google Scholar 

  11. Ghiasi, G., Lin, T.Y., Le, Q.V.: DropBlock: a regularization method for convolutional networks. In: NIPS (2018)

    Google Scholar 

  12. Ghosh, A., et al.: Interactive sketch & fill: multiclass sketch-to-image translation. In: CVPR (2019)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS (2017)

    Google Scholar 

  15. Huang, H.-P., Tseng, H.-Y., Lee, H.-Y., Huang, J.-B.: Semantic view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 592–608. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_35

    Chapter  Google Scholar 

  16. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  17. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV (2018)

    Google Scholar 

  18. Hung, W.C., Zhang, J., Shen, X., Lin, Z., Lee, J.Y., Yang, M.H.: Learning to blend photos. In: ECCV (2018)

    Google Scholar 

  19. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM TOG (Proc. SIGGRAPH) 35(4), 110 (2016)

    Google Scholar 

  20. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  21. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  22. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  23. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  24. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: NIPS (1992)

    Google Scholar 

  25. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300 (2015)

  26. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  27. Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: ultra-deep neural networks without residuals. In: ICML (2017)

    Google Scholar 

  28. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: ECCV (2018)

    Google Scholar 

  29. Lee, H.Y., et al.: DRIT++: diverse image-to-image translation via disentangled representations. IJCV 1–16 (2020)

    Google Scholar 

  30. Lee, H.Y., et al.: Neural design network: graphic layout generation with constraints. In: ECCV (2020)

    Google Scholar 

  31. Li, Y., Liu, M.Y., Li, X., Yang, M.H., Kautz, J.: A closed-form solution to photorealistic image stylization. In: ECCV (2018)

    Google Scholar 

  32. Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., Yang, M.H.: Mode seeking generative adversarial networks for diverse image synthesis. In: CVPR (2019)

    Google Scholar 

  33. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)

  34. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  35. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

    Google Scholar 

  36. Portenier, T., Hu, Q., Szabo, A., Bigdeli, S.A., Favaro, P., Zwicker, M.: FaceShop: deep sketch-based face image editing. ACM TOG (Proc. SIGGRAPH) 37(4), 99 (2018)

    Google Scholar 

  37. Singh, K.K., Ojha, U., Lee, Y.J.: FineGAN: unsupervised hierarchical disentanglement for fine-grained object generation and discovery. In: CVPR (2019)

    Google Scholar 

  38. Song, S., Zhang, W., Liu, J., Mei, T.: Unsupervised person image generation with semantic parsing transformation. In: CVPR (2019)

    Google Scholar 

  39. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Tseng, H.Y., Chen, Y.W., Tsai, Y.H., Liu, S., Lin, Y.Y., Yang, M.H.: Regularizing meta-learning via gradient dropout. arXiv preprint arXiv:2004.05859 (2020)

  41. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classification via learned feature-wise transformation. In: ICLR (2020)

    Google Scholar 

  42. Tseng, H.Y., Lee, H.Y., Jiang, L., Yang, W., Yang, M.H.: RetrieveGAN: image synthesis via differentiable patch retrieval. In: ECCV (2020)

    Google Scholar 

  43. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)

    Google Scholar 

  44. Zhang, H., et al.: StackGAN++: realistic image synthesis with stacked generative adversarial networks. TPAMI 41(8), 1947–1962 (2018)

    Article  Google Scholar 

  45. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  46. Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. ACM TOG (Proc. SIGGRAPH) 9(4) (2017)

    Google Scholar 

  47. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  48. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  49. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: NIPS (2017)

    Google Scholar 

  50. Zhu, J.Y., et al.: Visual object networks: image generation with disentangled 3D representations. In: NIPS (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the NSF CAREER Grant #1149783.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Yu Tseng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6370 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tseng, HY., Fisher, M., Lu, J., Li, Y., Kim, V., Yang, MH. (2020). Modeling Artistic Workflows for Image Generation and Editing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics