Advertisement

3D Fluid Flow Reconstruction Using Compact Light Field PIV

Conference paper
  • 868 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12361)

Abstract

Particle Imaging Velocimetry (PIV) estimates the fluid flow by analyzing the motion of injected particles. The problem is challenging as the particles lie at different depths but have similar appearances. Tracking a large number of moving particles is particularly difficult due to the heavy occlusion. In this paper, we present a PIV solution that uses a compact lenslet-based light field camera to track dense particles floating in the fluid and reconstruct the 3D fluid flow. We exploit the focal symmetry property in the light field focal stacks for recovering the depths of similar-looking particles. We further develop a motion-constrained optical flow estimation algorithm by enforcing the local motion rigidity and the Navier-Stoke fluid constraint. Finally, the estimated particle motion trajectory is used to visualize the 3D fluid flow. Comprehensive experiments on both synthetic and real data show that using a compact light field camera, our technique can recover dense and accurate 3D fluid flow.

Keywords

Volumetric flow reconstruction Particle Imaging Velocimetry (PIV) Light field imaging Focal stack 

Notes

This work is partially supported by the National Science Foundation (NSF) under Grant CBET-1706130 and CRII-1948524, and the Louisiana Board of Regent under Grant LEQSF (2018-21)-RD-A-10.

Supplementary material

504471_1_En_8_MOESM1_ESM.pdf (113 kb)
Supplementary material 1 (pdf 112 KB)

Supplementary material 2 (avi 56452 KB)

References

  1. 1.
    Adrian, R.J., Westerweel, J.: Particle Image Velocimetry, vol. 30. Cambridge University Press, Cambridge (2011)Google Scholar
  2. 2.
    Aguirre-Pablo, A.A., Alarfaj, M.K., Li, E.Q., Hernández-Sánchez, J.F., Thoroddsen, S.T.: Tomographic particle image velocimetry using smartphones and colored shadows. In: Scientific Reports (2017)Google Scholar
  3. 3.
    Arroyo, M., Greated, C.: Stereoscopic particle image velocimetry. Meas. Sci. Technol. 2(12), 1181 (1991)CrossRefGoogle Scholar
  4. 4.
    Atcheson, B., et al.: Time-resolved 3D capture of non-stationary gas flows. ACM Trans. Graph. (TOG) 27, 132 (2008)CrossRefGoogle Scholar
  5. 5.
    Belden, J., Truscott, T.T., Axiak, M.C., Techet, A.H.: Three-dimensional synthetic aperture particle image velocimetry. Meas. Sci. Technol. 21(12), 125403 (2010)CrossRefGoogle Scholar
  6. 6.
    Brücker, C.: 3D scanning piv applied to an air flow in a motored engine using digital high-speed video. Meas. Sci. Technol. 8(12), 1480 (1997)CrossRefGoogle Scholar
  7. 7.
    Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179(1), 298–310 (1996)CrossRefGoogle Scholar
  8. 8.
    Dansereau, D.G., Pizarro, O., Williams, S.B.: Decoding, calibration and rectification for lenselet-based plenoptic cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1027–1034 (2013)Google Scholar
  9. 9.
    Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)CrossRefGoogle Scholar
  10. 10.
    Fahringer, T., Thurow, B.: Tomographic reconstruction of a 3-D flow field using a plenoptic camera. In: 42nd AIAA Fluid Dynamics Conference and Exhibit, p. 2826 (2012)Google Scholar
  11. 11.
    Gregson, J., Ihrke, I., Thuerey, N., Heidrich, W.: From capture to simulation: connecting forward and inverse problems in fluids. ACM Trans. Graph. (TOG) 33(4), 139 (2014)CrossRefGoogle Scholar
  12. 12.
    Gu, J., Nayar, S.K., Grinspun, E., Belhumeur, P.N., Ramamoorthi, R.: Compressive structured light for recovering inhomogeneous participating media. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1 (2013)CrossRefGoogle Scholar
  13. 13.
    Hasinoff, S.W., Kutulakos, K.N.: Photo-consistent reconstruction of semitransparent scenes by density-sheet decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 29, 870–885 (2007)CrossRefGoogle Scholar
  14. 14.
    Hawkins, T., Einarsson, P., Debevec, P.: Acquisition of time-varying participating media. ACM Trans. Graph. (ToG) 24, 812–815 (2005)CrossRefGoogle Scholar
  15. 15.
    Heitz, D., Mémin, E., Schnörr, C.: Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids 48(3), 369–393 (2010)CrossRefGoogle Scholar
  16. 16.
    Hori, T., Sakakibara, J.: High-speed scanning stereoscopic piv for 3D vorticity measurement in liquids. Meas. Sci. Technol. 15(6), 1067 (2004)CrossRefGoogle Scholar
  17. 17.
    Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)CrossRefGoogle Scholar
  18. 18.
    Ihrke, I., Kutulakos, K.N., Lensch, H.P., Magnor, M., Heidrich, W.: Transparent and specular object reconstruction. In: Computer Graphics Forum, vol. 29, pp. 2400–2426. Wiley Online Library (2010)Google Scholar
  19. 19.
    Ihrke, I., Magnor, M.A.: Image-based tomographic reconstruction of flames. In: Symposium on Computer Animation (2004)Google Scholar
  20. 20.
    Ji, Y., Ye, J., Yu, J.: Reconstructing gas flows using light-path approximation. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2507–2514 (2013)Google Scholar
  21. 21.
    Kajitani, L., Dabiri, D.: A full three-dimensional characterization of defocusing digital particle image velocimetry. Meas. Sci. Technol. 16(3), 790 (2005)CrossRefGoogle Scholar
  22. 22.
    Lasinger, K., Vogel, C., Schindler, K.: Volumetric flow estimation for incompressible fluids using the stationary stokes equations. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2584–2592. IEEE (2017)Google Scholar
  23. 23.
    Lasinger, K., Vogel, C., Schindler, K.: Volumetric flow estimation for incompressible fluids using the stationary stokes equations. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2584–2592 (2017)Google Scholar
  24. 24.
    Li, Y., et al.: A public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence. J. Turbul. (9), N31 (2008)Google Scholar
  25. 25.
    Lin, H., Chen, C., Bing Kang, S., Yu, J.: Depth recovery from light field using focal stack symmetry. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3451–3459 (2015)Google Scholar
  26. 26.
    Lv, Z., Kim, K., Troccoli, A., Sun, D., Rehg, J.M., Kautz, J.: Learning rigidity in dynamic scenes with a moving camera for 3D motion field estimation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 468–484 (2018)Google Scholar
  27. 27.
    Lynch, K., Fahringer, T., Thurow, B.: Three-dimensional particle image velocimetry using a plenoptic camera. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 1056 (2012)Google Scholar
  28. 28.
    Ma, C., Lin, X., Suo, J., Dai, Q., Wetzstein, G.: Transparent object reconstruction via coded transport of intensity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3238–3245 (2014)Google Scholar
  29. 29.
    Maas, H., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2), 133–146 (1993)CrossRefGoogle Scholar
  30. 30.
    Meinhardt, E., Pérez, J.S., Kondermann, D.: Horn-schunck optical flow with a multi-scale strategy. IPOL J. 3, 151–172 (2013)CrossRefGoogle Scholar
  31. 31.
    Mendelson, L., Techet, A.H.: Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV. Exp. Fluids 56(7), 135 (2015)CrossRefGoogle Scholar
  32. 32.
    Morris, N.J., Kutulakos, K.N.: Dynamic refraction stereo. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1518–1531 (2011)CrossRefGoogle Scholar
  33. 33.
    Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P., et al.: Light field photography with a hand-held plenoptic camera. Comput. Sci. Tech. Rep. CSTR 2(11), 1–11 (2005)Google Scholar
  34. 34.
    Perlman, E., Burns, R., Li, Y., Meneveau, C.: Data exploration of turbulence simulations using a database cluster. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, p. 23. ACM (2007)Google Scholar
  35. 35.
    Pick, S., Lehmann, F.O.: Stereoscopic PIV on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings. Exp. Fluids 47(6), 1009 (2009)CrossRefGoogle Scholar
  36. 36.
    Schanz, D., Gesemann, S., Schröder, A.: Shake-the-box: lagrangian particle tracking at high particle image densities. Exp. Fluids 57(5), 70 (2016)CrossRefGoogle Scholar
  37. 37.
    Shi, S., Ding, J., Atkinson, C., Soria, J., New, T.H.: A detailed comparison of single-camera light-field PIV and tomographic PIV. Exp. Fluids 59, 1–13 (2018)CrossRefGoogle Scholar
  38. 38.
    Shi, S., Ding, J., New, T.H., Soria, J.: Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique. Exp. Fluids 58, 1–16 (2017)CrossRefGoogle Scholar
  39. 39.
    Soria, J., Atkinson, C.: Towards 3C–3D digital holographic fluid velocity vector field measurement? Tomographic digital holographic PIV (tomo-HPIV). Meas. Sci. Technol. 19(7), 074002 (2008)CrossRefGoogle Scholar
  40. 40.
    Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128. ACM Press/Addison-Wesley Publishing Co. (1999)Google Scholar
  41. 41.
    Strecke, M., Alperovich, A., Goldluecke, B.: Accurate depth and normal maps from occlusion-aware focal stack symmetry. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2529–2537. IEEE (2017)Google Scholar
  42. 42.
    Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. ACM Trans. Graph. (TOG) 26, 80 (2007)CrossRefGoogle Scholar
  43. 43.
    Vedula, S., Baker, S., Rander, P., Collins, R.T., Kanade, T.: Three-dimensional scene flow. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 722–729 (1999)Google Scholar
  44. 44.
    Wieneke, B.: Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45(4), 549–556 (2008)CrossRefGoogle Scholar
  45. 45.
    Willert, C., Gharib, M.: Three-dimensional particle imaging with a single camera. Exp. Fluids 12(6), 353–358 (1992)CrossRefGoogle Scholar
  46. 46.
    Xiong, J., Fu, Q., Idoughi, R., Heidrich, W.: Reconfigurable rainbow PIV for 3D flow measurement. In: 2018 IEEE International Conference on Computational Photography (ICCP), pp. 1–9. IEEE (2018)Google Scholar
  47. 47.
    Xiong, J., et al.: Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging. ACM Trans. Graph. (TOG) 36(4), 36 (2017)CrossRefGoogle Scholar
  48. 48.
    Xue, T., Rubinstein, M., Wadhwa, N., Levin, A., Durand, F., Freeman, W.T.: Refraction wiggles for measuring fluid depth and velocity from video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 767–782. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10578-9_50CrossRefGoogle Scholar
  49. 49.
    Ye, J., Ji, Y., Li, F., Yu, J.: Angular domain reconstruction of dynamic 3D fluid surfaces. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 310–317. IEEE (2012)Google Scholar
  50. 50.
    Zhang, J., Tao, B., Katz, J.: Turbulent flow measurement in a square duct with hybrid holographic PIV. Exp. Fluids 23(5), 373–381 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of DelawareNewarkUSA
  2. 2.DGeneBaton RougeUSA
  3. 3.ShanghaiTech UniversityShanghaiChina
  4. 4.Louisiana State UniversityBaton RougeUSA

Personalised recommendations