Skip to main content

Combining Task Predictors via Enhancing Joint Predictability

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Predictor combination aims to improve a (target) predictor of a learning task based on the (reference) predictors of potentially relevant tasks, without having access to the internals of individual predictors. We present a new predictor combination algorithm that improves the target by i) measuring the relevance of references based on their capabilities in predicting the target, and ii) strengthening such estimated relevance. Unlike existing predictor combination approaches that only exploit pairwise relationships between the target and each reference, and thereby ignore potentially useful dependence among references, our algorithm jointly assesses the relevance of all references by adopting a Bayesian framework. This also offers a rigorous way to automatically select only relevant references. Based on experiments on seven real-world datasets from visual attribute ranking and multi-class classification scenarios, we demonstrate that our algorithm offers a significant performance gain and broadens the application range of existing predictor combination approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, the term ‘linear’ signifies the capability of \(\mathcal {K}_\text {L}\) to capture the linear dependence of references, independent of \(\mathcal {K}_\text {L}\) being a linear operator as well.

References

  1. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008). https://doi.org/10.1007/s10994-007-5040-8

    Article  Google Scholar 

  2. Chen, L., Zhang, Q., Li, B.: Predicting multiple attributes via relative multi-task learning. In: CVPR, pp. 1027–1034 (2014)

    Google Scholar 

  3. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  4. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. JMLR 6, 615–637 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: CVPR, pp. 1778–1785 (2009)

    Google Scholar 

  6. Gong, P., Ye, J., Zhang, C.: Robust multi-task feature learning. In: KDD, pp. 895–903 (2012)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Hein, M., Maier, M.: Manifold denoising. In: NIPS, pp. 561–568 (2007)

    Google Scholar 

  9. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD, pp. 133–142 (2002)

    Google Scholar 

  10. Kim, K.I., Chang, H.J.: Joint manifold diffusion for combining predictions on decoupled observations. In: CVPR, pp. 7549–7557 (2019)

    Google Scholar 

  11. Kim, K.I., Tompkin, J., Richardt, C.: Predictor combination at test time. In: ICCV, pp. 3553–3561 (2017)

    Google Scholar 

  12. Kovashka, A., Parikh, D., Grauman, K.: WhittleSearch: image search with relative attribute feedback. In: CVPR, pp. 2973–2980 (2012)

    Google Scholar 

  13. Mejjati, Y.A., Cosker, D., Kim, K.I.: Multi-task learning by maximizing statistical dependence. In: CVPR, pp. 3465–3473 (2018)

    Google Scholar 

  14. Meng, Z., Adluru, N., Kim, H.J., Fung, G., Singh, V.: Efficient relative attribute learning using graph neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 575–590. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_34

    Chapter  Google Scholar 

  15. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001). https://doi.org/10.1023/A:1011139631724

    Article  MATH  Google Scholar 

  16. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  17. Parikh, D., Grauman, K.: Relative attributes. In: ICCV, pp. 503–510 (2011)

    Google Scholar 

  18. Passos, A., Rai, P., Wainer, J., Daumé III, H.: Flexible modeling of latent task structures in multitask learning. In: ICML, pp. 1103–1110 (2012)

    Google Scholar 

  19. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  20. Seeger, M., Williams, C.K.I., Lawrence, N.D.: Fast forward selection to speed up sparse Gaussian process regression. In: International Workshop on Artificial Intelligence and Statistics (2003)

    Google Scholar 

  21. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In: NIPS (2006)

    Google Scholar 

  22. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  23. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly. IEEE TPAMI 41(9), 2251–2265 (2019)

    Article  Google Scholar 

  24. Yang, X., Zhang, T., Xu, C., Yan, S., Hossain, M.S., Ghoneim, A.: Deep relative attributes. IEEE T-MM 18(9), 1832–1842 (2016)

    Google Scholar 

  25. Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: CVPR, pp. 192–199 (2014)

    Google Scholar 

  26. Zamir, A.R., Sax, A., Shen, W., Guibas, L., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: CVPR, pp. 3712–3722 (2018)

    Google Scholar 

  27. Zhou, X., Belkin, M., Srebro, N.: An iterated graph Laplacian approach for ranking on manifolds. In: KDD, pp. 877–885 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by UNIST’s 2020 Research Fund (1.200033.01), National Research Foundation of Korea (NRF) grant NRF-2019R1F1A1061603, and Institute of Information & Communications Technology Planning & Evaluation (IITP) grant (No. 20200013360011001, Artificial Intelligence Graduate School support (UNIST)) funded by the Korean government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang In Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 494 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, K.I., Richardt, C., Chang, H.J. (2020). Combining Task Predictors via Enhancing Joint Predictability. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12361. Springer, Cham. https://doi.org/10.1007/978-3-030-58517-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58517-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58516-7

  • Online ISBN: 978-3-030-58517-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics