Skip to main content

Metal 3D-Printing via Selective Laser Sintering

  • Chapter
  • First Online:
Materials Phase Change PDE Control & Estimation

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

Abstract

Metal Additive Manufacturing (AM) is a state-of-the-art manufacturing technology which has emerged rapidly in the last decade as observed from the growth in its global market. AM’s impact relies on products and supply chains in numerous industries such as automobiles, consumer electronics, aerospace, and medical devices. While industrial AM systems for polymer materials can produce reasonable quality for customers, AM for metallic materials still has room for quality improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Direct selective laser sintering of metals. Rapid Prototyp. J. 1(1), 26–36 (1995)

    Article  Google Scholar 

  2. S. Ahn, J. Murphy, J. Ramos, J. Beaman, Physical modeling for dynamic control of melting process in direct-SLS, in Proceedings of the 12th Annual Solid Freeform Fabrication Symposium, Austin, TX (2001), pp. 591–598

    Google Scholar 

  3. X. Cao, B. Ayalew, Partial differential equation-based multivariable control input optimization for laser-aided powder deposition processes. J. Manuf. Sci. Eng. 138(3), 031001 (2016)

    Google Scholar 

  4. H. Chung, S. Das, Numerical modeling of scanning laser-induced melting, vaporization and resolidification in metals subjected to step heat flux input. Int. J. Heat Mass Transf. 47(19), 4153–4164 (2004)

    Article  Google Scholar 

  5. M. Cotteleer, J. Joyce, 3D opportunity: additive manufacturing paths to performance, innovation, and growth. Deloitte Rev. 14, 5–19 (2014)

    Google Scholar 

  6. K. Dai, L. Shaw, Finite element analysis of the effect of volume shrinkage during laser densification. Acta Mater. 53(18), 4743–4754 (2005)

    Article  Google Scholar 

  7. A. Fasano, M. Primicerio, General free-boundary problems for the heat equation, I. J. Math. Anal. Appl. 57(3), 694–723 (1977)

    Article  MathSciNet  Google Scholar 

  8. S. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling and Analysis (Applied Mathematics and Mechanics, North-Holland, 2003)

    Google Scholar 

  9. M. Hinze, S. Ziegenbalg, Optimal control of the free boundary in a two-phase Stefan problem. J. Comput. Phys. 223(2), 657–684 (2007)

    Article  MathSciNet  Google Scholar 

  10. S. Kolossov, E. Boillat, R. Glardon, P. Fischer, M. Locher, 3D FE simulation for temperature evolution in the selective laser sintering process. Int. J. Mach. Tools Manuf. 44(2–3), 117–123 (2004)

    Article  Google Scholar 

  11. S. Kutluay, A. R. Bahadir, A. Özdes, The numerical solution of one-phase classical Stefan problem. J. Comput. Appl. Math. 81(1), 135–144 (1997)

    Article  MathSciNet  Google Scholar 

  12. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Woodhead, Cambridge, 2002)

    Book  Google Scholar 

  13. A.A. Rostami, A. Raisi, Temperature distribution and melt pool size in a semi-infinite body due to a moving laser heat source. Numer. Heat Transf. Part A Appl. 31(7), 783–796 (1997)

    Article  Google Scholar 

  14. D. Wang, X. Chen, A multirate fractional-order repetitive control for laser-based additive manufacturing. Control Eng. Pract. 77, 41–51 (2018)

    Article  Google Scholar 

  15. D. Wang, T. Jiang, X. Chen, Control-oriented modeling and repetitive control in In-layer and cross-layer thermal interactions in selective laser sintering, in Dynamic Systems and Control Conference, vol. 59155 (American Society of Mechanical Engineers, New York, 2019), p. V002T27A001

    Google Scholar 

  16. K. Zeng, D. Pal, B. Stucker, A review of thermal analysis methods in laser sintering and selective laser melting, in Proceedings of Solid Freeform Fabrication Symposium, Austin, TX, vol. 60 (2012), pp. 796–814

    Google Scholar 

  17. L. Zhang, T. Phillips, A. Mok, D. Moser, J. Beaman, Automatic laser control system for selective laser sintering. IEEE Trans. Industr. Inform. 15(4), 2177–2185 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koga, S., Krstic, M. (2020). Metal 3D-Printing via Selective Laser Sintering. In: Materials Phase Change PDE Control & Estimation. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-58490-0_10

Download citation

Publish with us

Policies and ethics