Skip to main content

Pure MaxSAT and Its Applications to Combinatorial Optimization via Linear Local Search

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12333))

Abstract

Maximum Satisfiability (MaxSAT) is a general model for formulating combinatorial optimization problems. MaxSAT formulas encoded from different domains have different features, yet most MaxSAT solvers are designed for general formulas. This work considers an important subclass of MaxSAT, named as Pure MaxSAT, which characterizes a wide range of combinatorial optimization problems particularly subset problems. We design a novel local search method for Pure MaxSAT, which combines the idea of linear search and local search and is dubbed as linear local search. Our algorithm LinearLS significantly outperforms state of the art MaxSAT solvers on Pure MaxSAT instances, including instances from MaxSAT Evaluations and those encoded from three famous NP hard combinatorial optimization problems. Moreover, LinearLS outperforms state of the art algorithms for each tested combinatorial optimization problem on the popular benchmarks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To distinguish with the weight of soft clauses w(c) in the original formula, we use hw(c) to denote the hard clause weight introduced by our method.

  2. 2.

    ftp://dimacs.rutgers.edu/pub/challenges.

  3. 3.

    http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/.

References

  1. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: Proceedings of IJCAI 2015, pp. 283–289 (2015)

    Google Scholar 

  3. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted partial MaxSAT. Artif. Intell. 250, 37–57 (2017)

    Article  MathSciNet  Google Scholar 

  4. Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-based MaxSAT algorithms. J. Heuristics 22(1), 1–53 (2016). https://doi.org/10.1007/s10732-015-9300-7

    Article  MATH  Google Scholar 

  5. Benedetti, M., Mori, M.: On the use of Max-SAT and PDDL in RBAC maintenance. Cybersecurity 2(1) (2019). Article number: 19. https://doi.org/10.1186/s42400-019-0036-9

  6. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incomplete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_3

    Chapter  Google Scholar 

  7. Berre, D.L., Parrain, A.: The SAT4J library, release 2.2. JSAT 7(2–3), 59–64 (2010)

    Google Scholar 

  8. Cai, S.: Balance between complexity and quality: local search for minimum vertex cover in massive graphs. In: Proceedings of IJCAI 2015, pp. 747–753 (2015)

    Google Scholar 

  9. Cai, S., Lin, J., Luo, C.: Finding a small vertex cover in massive sparse graphs: construct, local search, and preprocess. J. Artif. Intell. Res. 59, 463–494 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial MaxSAT. In: Proceedings of AAAI 2014, pp. 2623–2629 (2014)

    Google Scholar 

  11. Cai, S., Su, K.: Local search for Boolean Satisfiability with configuration checking and subscore. Artif. Intell. 204, 75–98 (2013)

    Article  Google Scholar 

  12. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif. Intell. 175(9–10), 1672–1696 (2011)

    Article  MathSciNet  Google Scholar 

  13. Demirovic, E., Musliu, N.: MaxSAT-based large neighborhood search for high school timetabling. Comput. OR 78, 172–180 (2017)

    Article  MathSciNet  Google Scholar 

  14. Demirovic, E., Musliu, N., Winter, F.: Modeling and solving staff scheduling with partial weighted MaxSAT. Ann. OR 275(1), 79–99 (2019). https://doi.org/10.1007/s10479-017-2693-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Optimizing kidney exchange with transplant chains: theory and reality. In: AAMAS 2012, pp. 711–718 (2012)

    Google Scholar 

  16. Fang, Z., Li, C., Xu, K.: An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem. J. Artif. Intell. Res. 55, 799–833 (2016)

    Article  MathSciNet  Google Scholar 

  17. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_25

    Chapter  Google Scholar 

  18. Fulkerson, D.R., Nemhauser, G.L., Trotter, L.: Two computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triple systems. In: Balinski, M.L. (ed.) Approaches to Integer Programming. MATHPROGRAMM, vol. 2, pp. 72–81. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0120689

    Chapter  Google Scholar 

  19. Gao, C., Weise, T., Li, J.: A weighting-based local search heuristic algorithm for the set covering problem. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2014, pp. 826–831 (2014)

    Google Scholar 

  20. Guerreiro, A.P., Terra-Neves, M., Lynce, I., Figueira, J.R., Manquinho, V.: Constraint-based techniques in stochastic local search MaxSAT solving. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 232–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_14

    Chapter  Google Scholar 

  21. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: Proceedings of AAAI 2011 (2011)

    Google Scholar 

  22. Huang, W., et al.: Finding and proving the exact ground state of a generalized Ising model by convex optimization and MAX-SAT. Phys. Rev. B 94, 134424 (2016)

    Article  Google Scholar 

  23. Jiang, H., Li, C., Liu, Y., Manyà, F.: A two-stage MaxSAT reasoning approach for the maximum weight clique problem. In: Proceedings of AAAI 2018, pp. 1338–1346 (2018)

    Google Scholar 

  24. Katzmann, M., Komusiewicz, C.: Systematic exploration of larger local search neighborhoods for the minimum vertex cover problem. In: Proceedings of AAAI 2017, pp. 846–852 (2017)

    Google Scholar 

  25. Konc, J., Janezic, D.: An improved branch and bound algorithm for the maximum clique problem. Commun. Math. Comput. Chem. 58, 569–590 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver. JSAT 8(1/2), 95–100 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Lei, Z., Cai, S.: Solving (weighted) partial MaxSAT by dynamic local search for SAT. In: Proceedings of IJCAI 2018, pp. 1346–1352 (2018)

    Google Scholar 

  28. Li, C., Fang, Z., Jiang, H., Xu, K.: Incremental upper bound for the maximum clique problem. INFORMS J. Comput. 30(1), 137–153 (2018)

    Article  MathSciNet  Google Scholar 

  29. Li, C., Fang, Z., Xu, K.: Combining MaxSAT reasoning and incremental upper bound for the maximum clique problem. In: ICTAI 2013, pp. 939–946 (2013)

    Google Scholar 

  30. Luo, C., Cai, S., Su, K., Huang, W.: CCEHC: an efficient local search algorithm for weighted partial maximum satisfiability. Artif. Intell. 243, 26–44 (2017)

    Article  MathSciNet  Google Scholar 

  31. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algorithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843 (2015)

    Article  MathSciNet  Google Scholar 

  32. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_33

    Chapter  Google Scholar 

  33. McCreesh, C., Prosser, P., Simpson, K., Trimble, J.: On maximum weight clique algorithms, and how they are evaluated. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 206–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_14

    Chapter  Google Scholar 

  34. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. OR 24(11), 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

  35. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints Int. J. 18(4), 478–534 (2013). https://doi.org/10.1007/s10601-013-9146-2

    Article  MathSciNet  MATH  Google Scholar 

  36. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary search for MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 284–297. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_22

    Chapter  Google Scholar 

  37. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: robust core-guided MaxSAT solving. JSAT 9, 129–134 (2014)

    MathSciNet  Google Scholar 

  38. Nadel, A.: Tt-Open-WBO-Inc.: Tuning polarity and variable selection for anytime SAT-based optimizatio. In: Proceedings of MaxSAT Evaluation 2019: Solver and Benchmark Description, p. 29 (2019)

    Google Scholar 

  39. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Proceedings of AAAI 2014, pp. 2717–2723 (2014)

    Google Scholar 

  40. Östergård, P.R.J.: A new algorithm for the maximum-weight clique problem. Electron. Notes Discrete Math. 3, 153–156 (1999)

    Article  MathSciNet  Google Scholar 

  41. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of AAAI 2015, pp. 4292–4293 (2015)

    Google Scholar 

  42. Segundo, P.S., Lopez, A., Batsyn, M., Nikolaev, A., Pardalos, P.M.: Improved initial vertex ordering for exact maximum clique search. Appl. Intell. 45(3), 868–880 (2016). https://doi.org/10.1007/s10489-016-0796-9

    Article  Google Scholar 

  43. Segundo, P.S., Rodríguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. OR 38(2), 571–581 (2011)

    Article  MathSciNet  Google Scholar 

  44. Tomita, E., Sutani, Y., Higashi, T., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique with computational experiments. IEICE Trans. 96-D(6), 1286–1298 (2013)

    Google Scholar 

  45. Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in a minimum vertex cover solver for classes of networks. In: IEEE Congress on Evolutionary Computation, CEC 2017, pp. 1704–1711 (2017)

    Google Scholar 

  46. Wang, Y., Cai, S., Yin, M.: Two efficient local search algorithms for maximum weight clique problem. In: Proceedings of AAAI 2016, pp. 805–811 (2016)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by Youth Innovation Promotion Association of Chinese Academy of Sciences [No. 2017150] and Beijing Academy of Artificial Intelligence (BAAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowei Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, S., Zhang, X. (2020). Pure MaxSAT and Its Applications to Combinatorial Optimization via Linear Local Search. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics