Skip to main content

Pushing Data into CP Models Using Graphical Model Learning and Solving

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12333))

Abstract

Integrating machine learning with automated reasoning is one of the major goals of modern AI systems. In this paper, we propose a non-fully-differentiable architecture that is able to extract preferences from data and push it into (weighted) Constraint Networks (aka Cost Function Networks or CFN) by learning cost functions. Our approach combines a (scalable) convex optimization approach with empirical hyper-parameter tuning to learn cost functions from a list of high-quality solutions. The proposed architecture has the ability to learn from noisy solutions and its output is just a CFN model. This model can be analyzed, empirically hardened, completed with side-constraints, and directly fed to a Weighted Constraint Satisfaction Problem solver.

To explore the performances and range of applicability of this architecture, we compare it with two recent neural-net friendly learning systems designed to “learn to reason” on the Sudoku problem and also show how it can be used to learn and integrate preferences into an existing CP model, in the context of Configuration systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This \(\log \) representation is often using in MRFs and the co-domain of factors is called “energy”.

  2. 2.

    The weights learned in the convex relaxation are floating-point numbers. A precise integer approximation generates large integer costs which are usually not the sweet spot of the most efficient, core-based, Max-SAT solvers  [28].

  3. 3.

    See https://www.irit.fr/~Helene.Fargier/BR4CP/benches.html.

  4. 4.

    We removed the first variable corresponding to the date of each sale product.

  5. 5.

    Solution counting was done by Backtracking with Tree Decomposition algorithm  [15] using min-fill heuristic implemented in toulbar2 v1.0.1 with options -ub=1 -a -O=-3 -B=1 -hbfs: -nopre Reported tree-width was 10 for medium and 12 for big instance.

  6. 6.

    We ensure our CFN and the XCSP2.1 XML file for the constraints use the same variable domains with the same increasing value ordering.

  7. 7.

    We used toulbar2 v1.0.1 with a limit of 50,000 backtracks and no preprocessing.

  8. 8.

    We implemented an incremental version of the toulbar2 solving procedure using its Python interface in order to load the problem and preprocess it only once.

References

  1. Allouche, D., et al.: Tractability-preserving transformations of global cost functions. Artif. Intell. 238, 166–189 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)

    MathSciNet  Google Scholar 

  3. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random fields and probabilistic soft logic. J. Mach. Learn. Res. 18(1), 3846–3912 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Besag, J.: Efficiency of pseudolikelihood estimation for simple gaussian fields. Biometrika 64, 616–618 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Bessiere, C., Fargier, H., Lecoutre, C.: Global inverse consistency for interactive constraint satisfaction. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 159–174. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_15

    Google Scholar 

  6. Bessiere, C., Fargier, H., Lecoutre, C.: Computing and restoring global inverse consistency in interactive constraint satisfaction. Artif. Intell. 241, 153–169 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif. Intell. 244, 315–342 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2007). http://www.worldcat.org/oclc/71008143

    Google Scholar 

  9. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–22 (2011)

    MATH  Google Scholar 

  10. Cooper, M., de Givry, S., Schiex, T.: Graphical models: queries, complexity, algorithms. Leibniz Int. Proc. Inform. 154, 1–4 (2020)

    Google Scholar 

  11. Elmachtoub, A.N., Grigas, P.: Smart predict, then optimize. arXiv preprint arXiv:1710.08005 (2017)

  12. Fargier, H., Gimenez, P., Mengin, J.: Recommendation for product configuration: an experimental evaluation. In: 18th International Configuration Workshop at CP-16, Toulouse, France (2016)

    Google Scholar 

  13. Fargier, H., Gimenez, P., Mengin, J.: Learning lexicographic preference trees from positive examples. In: Proceedings of AAAI-18, pp. 2959–2966. New Orleans, Louisiana (2018)

    Google Scholar 

  14. Fargier, H., Gimenez, P.F., Mengin, J.: Experimental evaluation of three value recommendation methods in interactive configuration. J. Univ. Comput. Sci. 26(3), 318–342 (2020)

    Google Scholar 

  15. Favier, A., de Givry, S., Jégou, P.: Exploiting problem structure for solution counting. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 335–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_27

    Google Scholar 

  16. Freuder, E.C.: Progress towards the holy grail. Constraints 23(2), 158–171 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Geman, S., Graffigne, C.: Markov random field image models and their applications to computer vision. In: Proceedings of the International Congress of Mathematicians, Berkeley, CA, vol. 1, p. 2 (1986)

    Google Scholar 

  18. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Hadžic, T., Wasowski, A., Andersen, H.R.: Techniques for efficient interactive configuration of distribution networks. In: Proceedings of IJCAI 2007, Hyderabad, India, pp. 100–105 (2007)

    Google Scholar 

  20. Kahneman, D.: Thinking, Fast and Slow. Macmillan, New York (2011)

    Google Scholar 

  21. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 767–775 (2002)

    Google Scholar 

  22. Klarreich, E.: Approximately Hard: The Unique Games Conjecture. Simons Foundation, New York (2011)

    Google Scholar 

  23. Kumar, M., Kolb, S., Teso, S., De Raedt, L.: Learning MAX-SAT from contextual examples for combinatorial optimisation. In: Proceedings of AAAI 2020, NYC, USA (2020)

    Google Scholar 

  24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Google Scholar 

  25. Liu, H., Roeder, K., Wasserman, L.: Stability approach to regularization selection (StARS) for high dimensional graphical models. In: Proceedings of Advances in Neural Information Processing Systems (NIPS 2010), vol. 24, pp. 1432–1440 (2010)

    Google Scholar 

  26. Mandi, J., Demirović, E., Stuckey, P., Guns, T., et al.: Smart predict-and-optimize for hard combinatorial optimization problems. In: Proceedings of AAAI 2020 (2020)

    Google Scholar 

  27. McGuire, G., Tugemann, B., Civario, G.: There is no 16-clue sudoku: solving the sudoku minimum number of clues problem via hitting set enumeration. Exp. Math. 23(2), 190–217 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Palm, R.B., Paquet, U., Winther, O.: Recurrent relational networks. In: Advances in Neural Information Processing Systems, Montréal, Canada, pp. 3372–3382 (2018)

    Google Scholar 

  30. Park, Y., Hallac, D., Boyd, S., Leskovec, J.: Learning the network structure of heterogeneous data via pairwise exponential Markov random fields. Proc. Mach. Learn. Res. 54, 1302 (2017)

    Google Scholar 

  31. Pohl, I.: Heuristic search viewed as path finding in a graph. Artif. Intell. 1(3–4), 193–204 (1970)

    MathSciNet  MATH  Google Scholar 

  32. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  33. Schmidhuber, J., Hochreiter, S.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  34. Simoncini, D., Allouche, D., de Givry, S., Delmas, C., Barbe, S., Schiex, T.: Guaranteed discrete energy optimization on large protein design problems. J. Chem. Theory Comput. 11(12), 5980–5989 (2015)

    Google Scholar 

  35. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    MATH  Google Scholar 

  36. Vuffray, M., Misra, S., Lokhov, A., Chertkov, M.: Interaction screening: efficient and sample-optimal learning of ising models. In: Advances in Neural Information Processing Systems, pp. 2595–2603 (2016)

    Google Scholar 

  37. Wang, P., Donti, P.L., Wilder, B., Kolter, J.Z.: SATnet: bridging deep learning and logical reasoning using a differentiable satisfiability solver. In: Proceedings of ICML 2019, Long Beach, California, USA, vol. 97, pp. 6545–6554. PMLR (2019)

    Google Scholar 

  38. Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application to puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86(5), 1052–1060 (2003)

    Google Scholar 

Download references

Acknowledgments

We thank the GenoToul (Toulouse, France) Bioinformatics and IFB Core (Evry, France) platforms for their computational support. We also thank the reviewers for their critics: the paper did improve, we think. This work has been supported by the French ANR through grants ANR-16-CE40-0028 and ANR-19-PIA3-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schiex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brouard, C., de Givry, S., Schiex, T. (2020). Pushing Data into CP Models Using Graphical Model Learning and Solving. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics