Skip to main content

Learning and Aggregating Deep Local Descriptors for Instance-Level Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

We propose an efficient method to learn deep local descriptors for instance-level recognition. The training only requires examples of positive and negative image pairs and is performed as metric learning of sum-pooled global image descriptors. At inference, the local descriptors are provided by the activations of internal components of the network. We demonstrate why such an approach learns local descriptors that work well for image similarity estimation with classical efficient match kernel methods. The experimental validation studies the trade-off between performance and memory requirements of the state-of-the-art image search approach based on match kernels. Compared to existing local descriptors, the proposed ones perform better in two instance-level recognition tasks and keep memory requirements lower. We experimentally show that global descriptors are not effective enough at large scale and that local descriptors are essential. We achieve state-of-the-art performance, in some cases even with a backbone network as small as ResNet18.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/gtolias/how.

  2. 2.

    The binarized versions are originally  [44] referred to as SMK\(^\star \) and ASMK\(^\star \). Only binarized versions are considered in this work and the asterisk is omitted.

  3. 3.

    To simplify, we use the same notation, i.e. \(\gamma (\cdot )\), for the normalization of different similarity measures in the rest of the text. In each case, it ensures unit self-similarity of the corresponding similarity measure.

  4. 4.

    Both f(I) and \(\mathcal {U}\) correspond to the same representation seen as a 3D tensor and a set of descriptors, respectively. We write \(\mathcal {U}=f(I)\) implying the tensor is transformed into a set of vectors. \(\mathcal {U}\) is, in fact, a multi-set, but it is referred to as set in the paper.

  5. 5.

    The main difference is that we do not follow the two stage training performed in the original work  [29]; DELF is trained in a single stage for our ablations.

  6. 6.

    https://github.com/filipradenovic/cnnimageretrieval-pytorch.

References

  1. Arandjelović, R., Zisserman, A.: All about VLAD. In: CVPR (2013)

    Google Scholar 

  2. Arandjelović, R., Zisserman, A.: DisLocation: scalable descriptor distinctiveness for location recognition. In: Cremers, D., Reid, I., Saito, H., Yang, M.H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 188–204. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_13

    Chapter  Google Scholar 

  3. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: CVPR (2016)

    Google Scholar 

  4. Babenko, A., Lempitsky, V.: Aggregating deep convolutional features for image retrieval. In: ICCV (2015)

    Google Scholar 

  5. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38

    Chapter  Google Scholar 

  6. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: Hpatches: a benchmark and evaluation of handcrafted and learned local descriptors. In: CVPR (2017)

    Google Scholar 

  7. Barroso Laguna, A., Riba, E., Ponsa, D., Mikolajczyk, K.: Key. net: keypoint detection by handcrafted and learned cnn filters. In: ICCV (2019)

    Google Scholar 

  8. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  9. Benbihi, A., Geist, M., Pradalier, C.: Elf: embedded localisation of features in pre-trained cnn. In: CVPR (2019)

    Google Scholar 

  10. Bhowmik, A., Gumhold, S., Rother, C., Brachmann, E.: Reinforced feature points: optimizing feature detection and description for a high-level task. In: CVPR (2020)

    Google Scholar 

  11. Cao, B., Araujo, A., Sim, J.: Unifying deep local and global features for efficient image search. In: arxiv (2020)

    Google Scholar 

  12. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: CVPRW (2018)

    Google Scholar 

  13. Dusmanu, M., et al.: D2-net: a trainable cnn for joint detection and description of local features. In: CVPR (2019)

    Google Scholar 

  14. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: End-to-End learning of deep visual representations for image retrieval. Int. J. Comput. Vis. 124(2), 237–254 (2017). https://doi.org/10.1007/s11263-017-1016-8

    Article  MathSciNet  Google Scholar 

  15. Gu, Y., Li, C., Jiang, Y.G.: Towards optimal cnn descriptors for large-scale image retrieval. In: ACM Multimedia (2019)

    Google Scholar 

  16. Husain, S., Bober, M.: Improving large-scale image retrieval through robust aggregation of local descriptors. PAMI 39(9), 1783–1796 (2016)

    Article  Google Scholar 

  17. Iscen, A., Tolias, G., Gosselin, P.H., Jégou, H.: A comparison of dense region detectors for image search and fine-grained classification. IEEE Trans. Image Process. 24(8), 2369–2381 (2015)

    Article  MathSciNet  Google Scholar 

  18. Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: CVPR, June 2009

    Google Scholar 

  19. Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 774–787. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_55

    Chapter  Google Scholar 

  20. Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. IJCV 87(3), 316–336 (2010)

    Article  Google Scholar 

  21. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. PAMI 33(1), 117–128 (2011)

    Article  Google Scholar 

  22. Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local descriptors into compact codes. In: PAMI, Sep 2012

    Google Scholar 

  23. Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 685–701. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_48

    Chapter  Google Scholar 

  24. Kim, H.J., Dunn, E., Frahm, J.M.: Learned contextual feature reweighting for image geo-localization. In: CVPR (2017)

    Google Scholar 

  25. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  26. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  27. Mikolajczyk, K., et al.: A comparison of affine region detectors. IJCV 65(1/2), 43–72 (2005)

    Article  Google Scholar 

  28. Mohedano, E., McGuinness, K., O’Connor, N.E., Salvador, A., Marques, F., Giro-i Nieto, X.: Bags of local convolutional features for scalable instance search. In: ICMR (2016)

    Google Scholar 

  29. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with attentive deep local features. In: ICCV (2017)

    Google Scholar 

  30. Perronnin, F., Liu, Y., Sanchez, J., Poirier, H.: Large-scale image retrieval with compressed Fisher vectors. In: CVPR (2010)

    Google Scholar 

  31. Perronnin, F., Liu, Y., Renders, J.M.: A family of contextual measures of similarity between distributions with application to image retrieval. In: CVPR, pp. 2358–2365 (2009)

    Google Scholar 

  32. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR (2007)

    Google Scholar 

  33. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: CVPR, June 2008

    Google Scholar 

  34. Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting oxford and paris: large-scale image retrieval benchmarking. In: CVPR (2018)

    Google Scholar 

  35. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. PAMI 41(7), 1655–1668 (2019)

    Article  Google Scholar 

  36. Razavian, A.S., Sullivan, J., Carlsson, S., Maki, A.: Visual instance retrieval with deep convolutional networks. ITE Trans. Media Technol. Appl. 4(3), 251–258 (2016)

    Article  Google Scholar 

  37. Revaud, J., Almazán, J., de Rezende, R.S., de Souza, C.R.: Learning with average precision: training image retrieval with a listwise loss. In: ICCV (2019)

    Google Scholar 

  38. Revaud, J., et al.: R2d2: repeatable and reliable detector and descriptor. In: NeurIPS (2019)

    Google Scholar 

  39. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  40. Schönberger, J.L., Radenović, F., Chum, O., Frahm, J.M.: From single image query to detailed 3D reconstruction. In: CVPR (2015)

    Google Scholar 

  41. Siméoni, O., Avrithis, Y., Chum, O.: Local features and visual words emerge in activations. In: CVPR (2019)

    Google Scholar 

  42. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: ICCV (2003)

    Google Scholar 

  43. Teichmann, M., Araujo, A., Zhu, M., Sim, J.: Detect-to-retrieve: efficient regional aggregation for image search. In: CVPR (2019)

    Google Scholar 

  44. Tolias, G., Avrithis, Y., Jégou, H.: Image search with selective match kernels: aggregation across single and multiple images. IJCV 116(3), 247–261 (2015). https://doi.org/10.1007/s11263-015-0810-4

    Article  MathSciNet  Google Scholar 

  45. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. In: ICLR (2016)

    Google Scholar 

  46. Vo, N., Jacobs, N., Hays, J.: Revisiting im2gps in the deep learning era. In: CVPR (2017)

    Google Scholar 

  47. Wang, Q., Zhou, X., Hariharan, B., Snavely, N.: Learning feature descriptors using camera pose supervision. In: arXiv (2020)

    Google Scholar 

  48. Weyand, T., Araujo, A., Cao, B., Sim, J.: Google landmarks dataset v2-a large-scale benchmark for instance-level recognition and retrieval. In: CVPR (2020)

    Google Scholar 

  49. Yang, T., Nguyen, D., Heijnen, H., Balntas, V.: Ur2kid: unifying retrieval, keypoint detection, and keypoint description without local correspondence supervision. In: arxiv (2020)

    Google Scholar 

  50. Yue-Hei Ng, J., Yang, F., Davis, L.S.: Exploiting local features from deep networks for image retrieval. In: CVPR (2015)

    Google Scholar 

  51. Zhu, C.Z., Jégou, H., ichi Satoh, S.: Query-adaptive asymmetrical dissimilarities for visual object retrieval. In: ICCV (2013)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Yannis Kalantidis for valuable discussions. This work was supported by MSMT LL1901 ERC-CZ grant. Tomas Jenicek was supported by CTU student grant SGS20/171/OHK3/3T/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Tolias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tolias, G., Jenicek, T., Chum, O. (2020). Learning and Aggregating Deep Local Descriptors for Instance-Level Recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics