Skip to main content

Conditional Convolutions for Instance Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

We propose a simple yet effective instance segmentation framework, termed CondInst (conditional convolutions for instance segmentation). Top-performing instance segmentation methods such as Mask R-CNN rely on ROI operations (typically ROIPool or ROIAlign) to obtain the final instance masks. In contrast, we propose to solve instance segmentation from a new perspective. Instead of using instance-wise ROIs as inputs to a network of fixed weights, we employ dynamic instance-aware networks, conditioned on instances. CondInst enjoys two advantages: (1) Instance segmentation is solved by a fully convolutional network, eliminating the need for ROI cropping and feature alignment. (2) Due to the much improved capacity of dynamically-generated conditional convolutions, the mask head can be very compact (e.g., 3 conv. layers, each having only 8 channels), leading to significantly faster inference. We demonstrate a simpler instance segmentation method that can achieve improved performance in both accuracy and inference speed. On the COCO dataset, we outperform a few recent methods including well-tuned Mask R-CNN baselines, without longer training schedules needed. Code is available: https://git.io/AdelaiDet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By FCNs, we mean the vanilla FCNs in [28] that only involve convolutions and pooling.

References

  1. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  2. Bian, J.W., Zhan, H., Wang, N., Chin, T.J., Shen, C., Reid, I.: Unsupervised depth learning in challenging indoor video: weak rectification to rescue. arXiv preprint arXiv:2006.02708 (2020)

  3. Bian, J., et al.: Unsupervised scale-consistent depth and ego-motion learning from monocular video. In: Advances in Neural Information Processing Systems, pp. 35–45 (2019)

    Google Scholar 

  4. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation. In: Proceedings of the IEEE International Conference on the Computer Vision, pp. 9157–9166 (2019)

    Google Scholar 

  5. Boominathan, L., Kruthiventi, S., Babu, R.V.: CrowdNet: a deep convolutional network for dense crowd counting. In: Proceedings of the ACM International Conference on Multimedia, pp. 640–644. ACM (2016)

    Google Scholar 

  6. Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., Yan, Y.: BlendMask: top-down meets bottom-up for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  7. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4974–4983 (2019)

    Google Scholar 

  8. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  9. Chen, X., Girshick, R., He, K., Dollár, P.: TensorMask: a foundation for dense object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2061–2069 (2019)

    Google Scholar 

  10. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  11. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

    Chapter  Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  13. Fathi, A., et al.: Semantic instance segmentation via deep metric learning. arXiv: Comp. Res. Repository (2017)

  14. He, K., Girshick, R., Dollár, P.: Rethinking ImageNet pre-training. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4918–4927 (2019)

    Google Scholar 

  15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. He, T., Shen, C., Tian, Z., Gong, D., Sun, C., Yan, Y.: Knowledge adaptation for efficient semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 578–587 (2019)

    Google Scholar 

  19. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE Conference Computer Vision Pattern Recognition, pp. 6409–6418 (2019)

    Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  21. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: Proceedings of the Advances in Neural Information Processing System, pp. 667–675 (2016)

    Google Scholar 

  22. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  23. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 2980–2988 (2017)

    Google Scholar 

  24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans. Pattern Anal. Mach 38, 2024–2039 (2016)

    Article  Google Scholar 

  26. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  27. Liu, Y., Shu, C., Wang, J., Shen, C.: Structured knowledge distillation for dense prediction. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  28. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  29. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: USENIX Symposium Operating Systems Design & Implementation (OSDI), pp. 265–283 (2016)

    Google Scholar 

  30. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  31. Neven, D., Brabandere, B.D., Proesmans, M., Gool, L.V.: Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 8837–8845 (2019)

    Google Scholar 

  32. Newell, A., Huang, Z., Deng, J.: Associative embedding: End-to-end learning for joint detection and grouping. In: Proceedings of the Advances in Neural Information Processing System, pp. 2277–2287 (2017)

    Google Scholar 

  33. Novotny, D., Albanie, S., Larlus, D., Vedaldi, A.: Semi-convolutional operators for instance segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_6

    Chapter  Google Scholar 

  34. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: visual reasoning with a general conditioning layer. In: Proceedings of the AAAI Conference on Artificial Intelligent (2018)

    Google Scholar 

  35. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the Advances in Neural Information Processings System, pp. 91–99 (2015)

    Google Scholar 

  36. Sofiiuk, K., Barinova, O., Konushin, A.: AdaptIS: adaptive instance selection network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7355–7363 (2019)

    Google Scholar 

  37. Tian, Z., He, T., Shen, C., Yan, Y.: Decoders matter for semantic segmentation: data-dependent decoding enables flexible feature aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3126–3135 (2019)

    Google Scholar 

  38. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  39. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: SOLO: segmenting objects by locations. arXiv: Comp. Res. Repository (2019)

  40. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.com/facebookresearch/detectron2 (2019)

  41. Xie, E., et al.: PolarMask: single shot instance segmentation with polar representation. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition (2020)

    Google Scholar 

  42. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: Condconv: conditionally parameterized convolutions for efficient inference. In: Proceedings of the Advances in Neural Information Processing System, pp. 1305–1316 (2019)

    Google Scholar 

  43. Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints of virtual normal for depth prediction. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  44. Yin, W., et al.: DiverseDepth: affine-invariant depth prediction using diverse data. arXiv preprint arXiv:2002.00569 (2020)

  45. Ying, H., Huang, Z., Liu, S., Shao, T., Zhou, K.: EmbedMask: embedding coupling for one-stage instance segmentation. arXiv preprint arXiv:1912.01954 (2019)

Download references

Acknowledgments

Correspondence should be addressed to CS. CS was in part supported by ARC DP ‘Deep learning that scales’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5195 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Z., Shen, C., Chen, H. (2020). Conditional Convolutions for Instance Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics