Skip to main content

Measuring Disagreement with Interpolants

  • 358 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12322)

Abstract

We consider the problem of quantitatively assessing the conflict between knowledge bases in knowledge merging scenarios. Using the notion of Craig interpolation we define a series of disagreement measures and analyse their compliance with properties proposed in previous work by Potyka. We study basic complexity theoretic questions in that scenario and discuss the suitability of our approaches .

Keywords

  • Disagreement measure
  • Craig interpolation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-58449-8_6
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-58449-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Notes

  1. 1.

    http://mthimm.de/misc/rst_dismes_proofs.pdf.

  2. 2.

    http://mthimm.de/misc/rst_dismes_proofs.pdf.

  3. 3.

    More specifically, the smallest size of a \(\phi '\in [\phi ]\).

References

  1. Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1963)

    MATH  Google Scholar 

  2. Baral, C., Minker, J., Kraus, S.: Combining multiple knowledge bases. IEEE Trans. Knowl. Data Eng. 3(2), 208–221 (1991)

    CrossRef  Google Scholar 

  3. Cholvy, L., Hunter, A.: Information fusion in logic: a brief overview. In: Gabbay, D.M., Kruse, R., Nonnengart, A., Ohlbach, H.J. (eds.) ECSQARU/FAPR -1997. LNCS, vol. 1244, pp. 86–95. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035614

    CrossRef  Google Scholar 

  4. Corea, C., Delfmann, P.: Supporting business rule management with inconsistency analysis. In: Proceedings of the Dissertation Award, Demonstration, and Industrial Track at BPM 2018 co-located with 16th International Conference on Business Process Management (BPM 2018), Sydney, Australia, September 9–14, 2018, pp. 141–147 (2018)

    Google Scholar 

  5. Corea, C., Thimm, M.: Towards inconsistency measurement in business rule bases. In: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), June 2020

    Google Scholar 

  6. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22(3), 250–268 (1957)

    CrossRef  MathSciNet  Google Scholar 

  7. Díaz, A.M., Pérez, R.P.: Impossibility in belief merging. Artif. Intell. 251, 1–34 (2017)

    CrossRef  MathSciNet  Google Scholar 

  8. Everaere, P., Konieczny, S., Marquis, P.: Belief merging versus judgment aggregation. In: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015) (2015)

    Google Scholar 

  9. Grant, J.: Classifications for inconsistent theories. Notre Dame J. Formal Logic 19(3), 435–444 (1978)

    CrossRef  MathSciNet  Google Scholar 

  10. Grant, J., Hunter, A.: Measuring consistency gain and information loss in stepwise inconsistency resolution. In: Liu, W. (ed.) ECSQARU 2011. LNCS (LNAI), vol. 6717, pp. 362–373. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22152-1_31

    CrossRef  MATH  Google Scholar 

  11. Grant, J., Hunter, A.: Measuring the good and the bad in inconsistent information. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013) (2013)

    Google Scholar 

  12. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In: Brewka, G., Lang, J. (eds.) Proceedings of the Eleventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), Sydney, Australia, pp. 358–366. AAAI Press, Menlo Park, September 2008

    Google Scholar 

  13. Knight, K.: Measuring inconsistency. J. Philos. Logic 31(1), 77–98 (2002)

    CrossRef  MathSciNet  Google Scholar 

  14. Konieczny, S., Pino Pérez, R.: On the logic of merging. In: Proceedings of the Sixth International Conference on Principles of Knowledge Representationa and Reasoning (KR 1998). Morgan Kaufmann (1998)

    Google Scholar 

  15. Kedian, M., Liu, W., Jin, Z.: A general framework for measuring inconsistency through minimal inconsistent sets. Knowl. Inf. Syst. 27, 85–114 (2011)

    CrossRef  Google Scholar 

  16. Mundici, D.: Tautologies with a unique craig interpolant, uniform vs. nonuniform complexity. Ann. Pure Appl. Logic 27(3), 265–273 (1984)

    CrossRef  MathSciNet  Google Scholar 

  17. Potyka, N.: Measuring disagreement among knowledge bases. In: Proceedings of the 12th International Conference on Scalable Uncertainty Management (SUM 2018) (2018)

    Google Scholar 

  18. Thimm, M.: On the evaluation of inconsistency measures. In: Grant, J., Martinez, M.V. (eds.) Measuring Inconsistency in Information. Studies in Logic, vol. 73. College Publications, February 2018

    Google Scholar 

  19. Thimm, M.: Inconsistency measurement. In: Proceedings of the 13th International Conference on Scalable Uncertainty Management (SUM 2019), December 2019

    Google Scholar 

  20. Williamson, J.: Aggregating judgements by merging evidence. J. Logic Comput. 19(3), 461–473 (2009)

    CrossRef  MathSciNet  Google Scholar 

  21. Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal unsatisfiable subsets. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012) (2012)

    Google Scholar 

Download references

Acknowledgements

The research reported here was partially supported by the Deutsche Forschungsgemeinschaft (grant DE1983/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jandson S. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ribeiro, J.S., Sofronie-Stokkermans, V., Thimm, M. (2020). Measuring Disagreement with Interpolants. In: Davis, J., Tabia, K. (eds) Scalable Uncertainty Management. SUM 2020. Lecture Notes in Computer Science(), vol 12322. Springer, Cham. https://doi.org/10.1007/978-3-030-58449-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58449-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58448-1

  • Online ISBN: 978-3-030-58449-8

  • eBook Packages: Computer ScienceComputer Science (R0)