Skip to main content

Improving the Safety of Pediatric Sedation: Human Error, Technology, and Clinical Microsystems

  • Chapter
  • First Online:
Pediatric Sedation Outside of the Operating Room

Abstract

Recent years have seen significant improvements in the safety of many areas of health care. However, evidence would suggest that the practice of pediatric sedation outside of the operating room is an area where unaddressed complexities and risks in care remain. In addition, the number of children receiving sedation outside of the operating room is on the increase, emphasizing the need to realize opportunities to improve safety. We outline the risks inherent in sedating children in the context of both the human factors and system factors perspectives. We incorporate examples from other high-technology industries such as aviation and nuclear power generation to allow a better understanding of why things go wrong during sedation and how safety can be monitored and improved. The value of prior risk assessment, communication, checklists, and formalized recovery pathways is discussed, and new directions for the development of safety initiatives are identified. Finally a number of practical steps based on existing successful safety approaches are given, with an emphasis on the demonstration of efficacy and the sharing of successful safety solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 June 2021

    Improving the Safety of Pediatric

References

  1. Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth Analg. 2009;108:795–804.

    CAS  PubMed  Google Scholar 

  2. Langhan ML, Mallory M, Hertzog JH, Lowrie L, Cravero JP. Physiologic monitoring practices during pediatric procedural sedation; a report from the Pediatric Sedation Research Consortium. Arch Pediatr Adolesc Med. 2012;166:990–8.

    PubMed  Google Scholar 

  3. Institute of Medicine. To err is human – building a safer health system. Washington, DC: National Academy Press; 2000.

    Google Scholar 

  4. Brennan TA, Leape LL, Laird NM, et al. Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I. N Engl J Med. 1991;324:370–6.

    CAS  PubMed  Google Scholar 

  5. Leape LL, Brennan TA, Laird N, et al. The nature of adverse events in hospitalized patients. Results of the Harvard Medical Practice Study II. N Engl J Med. 1991;324:377–84.

    CAS  PubMed  Google Scholar 

  6. Miguel Hernandez University and Ministry of Health and Consumer Affairs. National study on hospitalisation-related adverse events ENEAS 2005. Madrid. 2006. Available from: http://www.who.int/patientsafety/information_centre/reports/ENEAS-EnglishVersion-SPAIN.pdf.

  7. Thomas EJ, Studdert DM, Burstin HR, et al. Incidence and types of adverse events and negligent care in Utah and Colorado. Med Care. 2000;38:261–71.

    CAS  PubMed  Google Scholar 

  8. Soop M, Fryksmark U, Köster M, Haglund B. The incidence of adverse events in Swedish hospitals: a retrospective medical record review study. Int J Qual Health Care. 2009;21:285–91.

    PubMed  PubMed Central  Google Scholar 

  9. Sari AB, Sheldon TA, Cracknell A, et al. Extent, nature and consequences of adverse events: results of a retrospective casenote review in a large NHS hospital. Qual Saf Health Care. 2007;16:434–9.

    PubMed  PubMed Central  Google Scholar 

  10. Zegers M, de Bruijne MC, Wagner C, et al. Adverse events and potentially preventable deaths in Dutch hospitals: results of a retrospective patient record review study. Qual Saf Health Care. 2009;18:297–302.

    CAS  PubMed  Google Scholar 

  11. Vincent C, Neale G, Woloshynowych M. Adverse events in British hospitals: preliminary retrospective record review. BMJ. 2001;322:517–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Baker GR, Norton PG, Flintoft V, et al. The Canadian Adverse Events Study: the incidence of adverse events among hospital patients in Canada. Can Med Assoc J. 2004;170:1678–86.

    Google Scholar 

  13. Davis P, Lay-Yee R, Briant R, Ali W, Scott A, Schug S. Adverse events in New Zealand public hospitals I: occurrence and impact. N Z Med J. 2002;115:U271.

    PubMed  Google Scholar 

  14. Davis P, Lay-Yee R, Briant R, Ali W, Scott A, Schug S. Adverse events in New Zealand public hospitals II: preventability and clinical context. N Z Med J. 2003;116:U624.

    PubMed  Google Scholar 

  15. Wilson RM, Runciman WB, Gibberd RW, Harrison BT, Newby L, Hamilton JD. The quality in Australian health care study. Med J Aust. 1995;163:458–71.

    CAS  PubMed  Google Scholar 

  16. Woods D, Thomas E, Holl J, Altman S, Brennan T. Adverse events and preventable adverse events in children. Pediatrics. 2005;115:155–60.

    PubMed  Google Scholar 

  17. Habre W, Disma N, Virag K, et al. Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe. Lancet Respir Med. 2017;5:412–25.

    PubMed  Google Scholar 

  18. Merry AF, Anderson BJ. Medication errors – new approaches to prevention. Pediatr Anesth. 2011;21:743–53.

    Google Scholar 

  19. Webster CS, Mason KP, Shafer SL. Threats to safety during sedation outside of the operating room and the death of Michael Jackson. Curr Opin Anaesthesiol. 2016;29(Suppl 1):S36–47.

    PubMed  Google Scholar 

  20. Malviya S, Voepel-Lewis T, Tait AR. Adverse events and risk factors associated with the sedation of children by nonanesthesiologists. Anesth Analg. 1997;85:1207–13.

    CAS  PubMed  Google Scholar 

  21. Bowdle A, Kruger C, Grieve R, Emmens D, Merry A. Anesthesia drug administration error in a university hospital. Anesthesiology. 2003;99:A1358.

    Google Scholar 

  22. Zhang Y, Dong YJ, Webster CS, et al. The frequency and nature of drug administration error during anaesthesia in a Chinese hospital. Acta Anaesthesiol Scand. 2013;57:158–64.

    CAS  PubMed  Google Scholar 

  23. Llewellyn RL, Gordon PC, Wheatcroft D, et al. Drug administration error – a prospective survey from three South African teaching hospitals. Anaesth Intensive Care. 2009;37:93–8.

    CAS  PubMed  Google Scholar 

  24. Cooper L, DiGiovanni N, Schultz L, Taylor AM, Nossaman B. Influences observed on incidence and reporting of medication errors in anesthesia. Can J Anaesth. 2012;59:562–70.

    PubMed  Google Scholar 

  25. Webster CS, Merry AF, Larsson L, McGrath KA, Weller J. The frequency and nature of drug administration error during anaesthesia. Anaesth Intensive Care. 2001;29:494–500.

    CAS  PubMed  Google Scholar 

  26. Nanji KC, Patel A, Shaikh S, Seger DL, Bates DW. Evaluation of perioperative medication errors and adverse drug events. Anesthesiology. 2016;124:25–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Webster CS. Estimating and reporting error rates, and detecting improvements. Eur J Anaesthesiol. 2018;35:60–1.

    PubMed  Google Scholar 

  28. Pandit JJ, Andrade J, Bogod DG, et al. 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors. Br J Anaesth. 2014;113:549–59.

    CAS  PubMed  Google Scholar 

  29. Leslie K, Culwick MD, Reynolds H, Hannam JA, Merry AF. Awareness during general anaesthesia in the first 4,000 incidents reported to webAIRS. Anaesth Intensive Care. 2017;45:441–7.

    CAS  PubMed  Google Scholar 

  30. MacLennan AI, Smith AF. An analysis of critical incidents relevant to pediatric anesthesia reported to the UK National Reporting and Learning System, 2006-2008. Paediatr Anaesth. 2011;21:841–7.

    PubMed  Google Scholar 

  31. Runciman WB, Merry AF, Tito F. Error, blame, and the law in health care--an antipodean perspective. Ann Intern Med. 2003;138:974–9.

    PubMed  Google Scholar 

  32. Thomas AN, Panchagnula U. Medication-related patient safety incidents in critical care: a review of reports to the UK National Patient Safety Agency. Anaesthesia. 2008;63:726–33.

    CAS  PubMed  Google Scholar 

  33. McCawley D, Cyna AM, Prineas S, Tan S. A survey of the sequelae of memorable anaesthetic drug errors from the anaesthetist’s perspective. Anaesth Intensive Care. 2017;45:624–30.

    CAS  PubMed  Google Scholar 

  34. Hicks RW, Becker SC. An overview of intravenous-related medication administration errors as reported to MEDMARX, a national medication error-reporting program. J Infus Nurs. 2006;29:20–7.

    PubMed  Google Scholar 

  35. Hicks RW, Becker SC, Windle PE, Krenzischek DA. Medication errors in the PACU. J Perianesth Nurs. 2007;22:413–9.

    PubMed  Google Scholar 

  36. Wilson DG, McArtney RG, Newcombe RG, et al. Medication errors in paediatric practice: insights from a continuous quality improvement approach. Eur J Pediatr. 1998;157:769–74.

    CAS  PubMed  Google Scholar 

  37. Polaner DM, Taenzer AH, Walker BJ, et al. Pediatric Regional Anesthesia Network (PRAN): a multi-institutional study of the use and incidence of complications of pediatric regional anesthesia. Anesth Analg. 2012;115:1353–64.

    CAS  PubMed  Google Scholar 

  38. Wong GK, Arab AA, Chew SC, Naser B, Crawford MW. Major complications related to epidural analgesia in children: a 15-year audit of 3,152 epidurals. Can J Anaesth. 2013;60:355–63.

    PubMed  Google Scholar 

  39. Anderson B, McKenzie R, Persson M, Garden S. Safety of postoperative paediatric analgesia. Acute Pain. 1998;1:14–20.

    CAS  Google Scholar 

  40. Daverio M, Fino G, Luca B, et al. Failure mode and effective analysis ameliorate awareness of medical errors: a 4-year prospective observational study in critically ill children. Pediatr Anesth. 2015;25:1227–34.

    Google Scholar 

  41. Lobaugh LMY, Martin LD, Schleelein LE, Tyler DC, Litman RS. Medication errors in pediatric anesthesia: a report from the wake up safe quality improvement initiative. Anesth Analg. 2017;125:936–42.

    PubMed  Google Scholar 

  42. Feinstein MM, Pannunzio AE, Castro P. Frequency of medication error in pediatric anesthesia: a systematic review and meta-analytic estimate. Paediatr Anaesth. 2018;28:1071–7.

    PubMed  Google Scholar 

  43. Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU [erratum appears in N Engl J Med. 2007 Jun 21; 356: 2660]. N Engl J Med. 2006;355:2725–32.

    CAS  PubMed  Google Scholar 

  44. Haynes AB, Weiser TG, Berry WR, et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360:491–9.

    CAS  PubMed  Google Scholar 

  45. Webster CS, Larsson L, Frampton CM, et al. Clinical assessment of a new anaesthetic drug administration system: a prospective, controlled, longitudinal incident monitoring study. Anaesthesia. 2010;65:490–9.

    CAS  PubMed  Google Scholar 

  46. Bowdle TA, Jelacic S, Nair B, et al. Facilitated self-reported anaesthetic medication errors before and after implementation of a safety bundle and barcode-based safety system. Br J Anaesth. 2018;121:1338–45.

    CAS  PubMed  Google Scholar 

  47. Merry AF, Webster CS, Hannam J, et al. Multimodal system designed to reduce errors in recording and administration of drugs in anaesthesia: a prospective randomised clinical evaluation. BMJ. 2011;343:d5543. https://doi.org/10.1136/bmj.d5543.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cravero JP, Blike GT, Beach M, et al. Incidence and nature of adverse events during pediatric sedation/anesthesia for procedures outside the operating room: report from the Pediatric Sedation Research Consortium. Pediatrics. 2006;118:1087–96.

    PubMed  Google Scholar 

  49. Cook TM, Woodall N, Frerk C, The Fourth National Audit Project. Major complications of airway management in the UK: results of the fourth National Audit Project of the Royal College of anaesthetists and the difficult airway society. Part 1: anaesthesia. Br J Anaesth. 2011;106:617–31.

    CAS  PubMed  Google Scholar 

  50. Cook TM, Woodall N, Harper J, Benger J, The Fourth National Audit Project. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 2: intensive care and emergency departments. Br J Anaesth. 2011;106:632–42.

    CAS  PubMed  Google Scholar 

  51. Cudny ME, Wang NE, Bardas SL, Nguyen CN. Adverse events associated with procedureal sedation in pediatric patients in the emergency department. Hosp Pharm. 2013;48:134–42.

    PubMed  PubMed Central  Google Scholar 

  52. Gariel C, Cogniat B, Desgranges FP, Chassard D, Bouvet L. Incidence, characteristics, and predictive factors for medication errors in paediatric anaesthesia: a prospective incident monitoring study. Br J Anaesth. 2018;120:563–70.

    CAS  PubMed  Google Scholar 

  53. Anderson BJ. Drug error in paediatric anaesthesia: current status and where to go now. Curr Opin Anesthesiol. 2018;31:333–41.

    Google Scholar 

  54. Roback MG, Wathen JE, Bajaj L, Bothner JP. Adverse events associated with procedural sedation and analgesia in a pediatric emergency department: a comparison of common parenteral drugs. Acad Emerg Med. 2005;12:508–13.

    PubMed  Google Scholar 

  55. Donabedian A. An introduction to quality assurance in health care. New York: Oxford University Press; 2003.

    Google Scholar 

  56. Babl FE, Krieser D, Belousouff J, Theophilos T. Evaluation of a paediatric procedural sedation training and credentialing programme: sustainability of change. Emerg Med J. 2010;27:577–81.

    PubMed  Google Scholar 

  57. Merry A, Brookbanks W. Merry and McCall Smith’s errors, medicine and the law. Cambridge: Cambridge University Press; 2017.

    Google Scholar 

  58. Runciman B, Merry AF, Walton M. Safety and ethics in healthcare: a guide to getting it right. Aldershot: Ashgate Publishing Ltd; 2007.

    Google Scholar 

  59. ASHP guidelines on preventing medication errors in hospitals. Am J Hosp Pharm. 1993;50:305–14.

    Google Scholar 

  60. Merry AF, Anderson BJ. Medication errors--new approaches to prevention. Paediatr Anaesth. 2011;21:743–53.

    PubMed  Google Scholar 

  61. Battin M, Jamalpuri V, Bough G, Voss L. Antibiotic prophylaxis and neonatal surgical site infection. J Paediatr Child Health. 2016;52:913–4.

    PubMed  Google Scholar 

  62. Merry AF, Webster CS, Mathew DJ. A new, safety-oriented, integrated drug administration and automated anesthesia record system. Anesth Analg. 2001;93:385–90.

    CAS  PubMed  Google Scholar 

  63. Morray JP. Cardiac arrest in anesthetized children: recent advances and challenges for the future. Paediatr Anaesth. 2011;21:722–9.

    PubMed  Google Scholar 

  64. Keenan RL, Shapiro JH, Kane FR, Simpson PM. Bradycardia during anesthesia in infants. An epidemiologic study. Anesthesiology. 1994;80:976–82.

    CAS  PubMed  Google Scholar 

  65. Lunn JN. Implications of the national confidential enquiry into perioperative deaths for paediatric anaesthesia. Pediatr Anesth. 1992;2:69–72.

    Google Scholar 

  66. Takata GS, Mason W, Taketomo C, Logsdon T, Sharek PJ. Development, testing, and findings of a pediatric-focused trigger tool to identify medication-related harm in US children’s hospitals. Pediatrics. 2008;121:e927–35.

    PubMed  Google Scholar 

  67. Avidan A, Levin PD, Weissman C, Gozal Y. Anesthesiologists’ ability in calculating weight-based concentrations for pediatric drug infusions: an observational study. J Clin Anesth. 2014;26:276–80.

    CAS  PubMed  Google Scholar 

  68. Mc Donnell C. Opioid medication errors in pediatric practice: four years’ experience of voluntary safety reporting. Pain Res Manag. 2011;16:93–8.

    PubMed  PubMed Central  Google Scholar 

  69. Pitetti R, Davis PJ, Redlinger R, White J, Wiener E, Calhoun KH. Effect on hospital-wide sedation practices after implementation of the 2001 JCAHO procedural sedation and analgesia guidelines. Arch Pediatr Adolesc Med. 2006;160:211–6.

    PubMed  Google Scholar 

  70. Green SM, Roback MG, Krauss B, et al. Predictors of airway and respiratory adverse events with ketamine sedation in the emergency department: an individual-patient data meta-analysis of 8,282 children. Ann Emerg Med. 2009;54:158–68 e1-4.

    PubMed  Google Scholar 

  71. Barker KN, Allan EL. Research on drug-use-system errors. Am J Health Syst Pharm. 1995;52:400–3.

    CAS  PubMed  Google Scholar 

  72. Koren G, Barzilay Z, Greenwald M. Tenfold errors in administration of drug doses: a neglected iatrogenic disease in pediatrics. Pediatrics. 1986;77:848–9.

    CAS  PubMed  Google Scholar 

  73. Doherty C, Mc Donnell C. Tenfold medication errors: 5 years’ experience at a university-affiliated pediatric hospital. Pediatrics. 2012;129:916–24.

    PubMed  Google Scholar 

  74. Kaufmann J, Laschat M, Wappler F. Medication errors in pediatric emergencies: a systematic analysis. Dtsch Arztebl Int. 2012;109:609–16.

    PubMed  PubMed Central  Google Scholar 

  75. Anderson BJ, Holford NH. Understanding dosing: children are small adults, neonates are immature children. Arch Dis Child. 2013;98:737–44.

    PubMed  Google Scholar 

  76. Berde C. Convulsions associated with pediatric regional anesthesia. Anesth Analg. 1992;75:164–6.

    CAS  PubMed  Google Scholar 

  77. Anderson BJ, Holford NH. Tips and traps analyzing pediatric PK data. Pediatr Anesth. 2011;21:222–37.

    Google Scholar 

  78. Thomas J, Corson NI, Meinhold A, Both CP. Neurological excitation in a 6-week-old male infant after morphine overdose. Pediatr Anesth. 2019;29:1060–1.

    Google Scholar 

  79. Anderson BJ, Meakin GH. Scaling for size: some implications for paediatric anaesthesia dosing. Paediatr Anaesth. 2002;12:205–19.

    PubMed  Google Scholar 

  80. Standing JF. Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Br J Clin Pharmacol. 2017;83:247–54.

    PubMed  Google Scholar 

  81. McFarlan CS, Anderson BJ, Short TG. The use of propofol infusions in paediatric anaesthesia: a practical guide. Paediatr Anaesth. 1999;9:209–16.

    CAS  PubMed  Google Scholar 

  82. Roberts FL, Dixon J, Lewis GT, Tackley RM, Prys RC. Induction and maintenance of propofol anaesthesia. A manual infusion scheme. Anaesthesia. 1988;43(Suppl):14–7.

    PubMed  Google Scholar 

  83. Menson EN, Walker AS, Sharland M, et al. Underdosing of antiretrovirals in UK and Irish children with HIV as an example of problems in prescribing medicines to children, 1997-2005: cohort study. BMJ. 2006;332:1183–7.

    PubMed  PubMed Central  Google Scholar 

  84. Sumpter A, Anderson BJ. Phenobarbital and some anesthesia implications. Pediatr Anesth. 2011;21:995–7.

    Google Scholar 

  85. Eker HE, Yalcin Cok O, Aribogan A, Arslan G. Children on phenobarbital monotherapy requires more sedatives during MRI. Pediatr Anesth. 2011;10:998–1002.

    Google Scholar 

  86. Anderson BJ. Is it farewell to codeine? Arch Dis Child. 2013;98:986–8.

    PubMed  Google Scholar 

  87. Gammal RS, Crews KR, Haidar CE, et al. Pharmacogenetics for safe codeine use in sickle cell disease. Pediatrics. 2016;138:e20153479.

    PubMed  PubMed Central  Google Scholar 

  88. Dawes JM, Cooke EM, Hannam JA, et al. Oral morphine dosing predictions based on single dose in healthy children undergoing surgery. Paediatr Anaesth. 2017;27:28–36.

    PubMed  Google Scholar 

  89. Anderson BJ, van den Anker J. Why is there no morphine concentration-response curve for acute pain? Paediatr Anaesth. 2014;24:233–8.

    PubMed  Google Scholar 

  90. Larsson P, Nordlinder A, Bergendahl HT, et al. Oral bioavailability of clonidine in children. Paediatr Anaesth. 2011;21:335–40.

    PubMed  Google Scholar 

  91. Stassinos GL, Gonzales L, Klein-Schwartz W. Characterizing the toxicity and dose-effect profile of tramadol ingestions in children. Pediatr Emerg Care. 2017;35:111.

    Google Scholar 

  92. Anderson BJ, Thomas J, Ottaway K, Chalkiadis GA. Tramadol: keep calm and carry on. Paediatr Anaesth. 2017;27:785–8.

    PubMed  Google Scholar 

  93. Ma H, Lovich MA, Peterfreund RA. Quantitative analysis of continuous intravenous infusions in pediatric anesthesia: safety implications of dead volume, flow rates, and fluid delivery. Paediatr Anaesth. 2011;21:78–86.

    PubMed  Google Scholar 

  94. Davidson A, Brown TC. Respiratory arrest in two children following postoperative flushing of suxamethonium from the deadspace of intravenous cannulae. Anaesth Intensive Care. 1996;24:97–8.

    CAS  PubMed  Google Scholar 

  95. Zenk KE. Intravenous drug delivery in infants with limited i.v. access and fluid restriction. Am J Hosp Pharm. 1987;44:2542–5.

    CAS  PubMed  Google Scholar 

  96. Noble-Jamieson CM, Kuzmin P, Airede KI. Hidden sources of fluid and sodium intake in ill newborns. Arch Dis Child. 1986;61:695–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Deardorff DL. Osmotic strength, osmolality, and osmolarity. Am J Hosp Pharm. 1980;37:504–9.

    CAS  PubMed  Google Scholar 

  98. Greig A, Ryan J, Glucksman E. How good are doctors at estimating children’s weight? J Accid Emerg Med. 1997;14:101–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Harris M, Patterson J, Morse J. Doctors, nurses, and parents are equally poor at estimating pediatric weights. Pediatr Emerg Care. 1999;15:17–8.

    CAS  PubMed  Google Scholar 

  100. Black K, Barnett P, Wolfe R, Young S. Are methods used to estimate weight in children accurate? Emerg Med (Fremantle). 2002;14:160–5.

    Google Scholar 

  101. Luscombe MD, Owens BD, Burke D. Weight estimation in paediatrics: a comparison of the APLS formula and the formula ‘Weight=3(age)+7’. Emerg Med J. 2010;28:590.

    PubMed  Google Scholar 

  102. Anderson BJ, Holford NH. Getting the dose right for obese children. Arch Dis Child. 2017;102:54–5.

    PubMed  Google Scholar 

  103. Holford NHG, Anderson BJ. Allometric size: the scientific theory and extension to normal fat mass. Eur J Pharm Sci. 2017;109S:S59–64.

    PubMed  Google Scholar 

  104. Anderson BJ, Holford NH. What is the best size predictor for dose in the obese child? Paediatr Anaesth. 2017;27:1176–84.

    PubMed  Google Scholar 

  105. Kannikeswaran N, Mahajan PV, Sethuraman U, Groebe A, Chen X. Sedation medication received and adverse events related to sedation for brain MRI in children with and without developmental disabilities. Paediatr Anaesth. 2009;19:250–6.

    PubMed  Google Scholar 

  106. Kannikeswaran N, Sethuraman U, Sivaswamy L, Chen X, Mahajan PV. Children with and without developmental disabilities: sedation medication requirements and adverse events related to sedation. Pediatr Emerg Care. 2012;28:1036–40.

    PubMed  Google Scholar 

  107. Isik B, Baygin O, Kapci EG, Bodur H. The effects of temperament and behaviour problems on sedation failure in anxious children after midazolam premedication. Eur J Anaesthesiol. 2010;27:336–40.

    CAS  PubMed  Google Scholar 

  108. Litman RS, Soin K, Salam A. Chloral hydrate sedation in term and preterm infants: an analysis of efficacy and complications. Anesth Analg. 2010;110:739–46.

    CAS  PubMed  Google Scholar 

  109. Anderson BJ. Drug error in paediatric anaesthesia: current status and where to go now. Curr Opin Anaesthesiol. 2018;31:333–41.

    PubMed  Google Scholar 

  110. Kim RY, Kwakye G, Kwok AC, et al. Sustainability and long-term effectiveness of the WHO surgical safety checklist combined with pulse oximetry in a resource-limited setting: two-year update from Moldova. JAMA Surg. 2015;150:473–9.

    PubMed  Google Scholar 

  111. Barach P, Johnson JK. Understanding the complexity of redesigning care around the clinical microsystem. Qual Saf Health Care. 2006;15:i10–i6.

    PubMed  PubMed Central  Google Scholar 

  112. O’Leary KJ, Johnson JK, Manojlovich M, Goldstein JD, Lee J, Williams MV. Redesigning systems to improve teamwork and quality for hospitalized patients (RESET): study protocol evaluating the effect of mentored implementation to redesign clinical microsystems. BMC Health Serv Res. 2019;8:293. https://doi.org/10.1186/s12913-019-4116-z.

    Article  Google Scholar 

  113. Marsh DR, Schroeder DG, Dearden KA, Sternin J, Sternin M. The power of positive deviance. BMJ. 2004;329:1177–9.

    PubMed  PubMed Central  Google Scholar 

  114. Lingard L, Espin S, Evans C, Hawryluck L. The rules of the game: interprofessional collaboration on the intensive care unit team. Crit Care. 2004;8:R403–R8.

    PubMed  PubMed Central  Google Scholar 

  115. Lingard L, Regehr G, Orser B, et al. Evaluation of a perioperative checklist and team debriefing among surgeons, nurses, and anesthesiologists to reduce failures in communication. Arch Surg. 2008;143:12–8.

    PubMed  Google Scholar 

  116. Zibrowski EM, Singh SI, Goldszmidt MA, et al. The sum of the parts detracts from the intended whole: competencies and in-training assessments. Med Educ. 2009;43:741–8.

    PubMed  Google Scholar 

  117. Reason J. Human Error. New York: Cambridge University Press; 1990.

    Google Scholar 

  118. Webster CS. Human psychology applies to doctors too. Anaesthesia. 2000;55:929–30.

    CAS  PubMed  Google Scholar 

  119. Anderson DJ, Webster CS. A systems approach to the reduction of medication error on the hospital ward. J Adv Nurs. 2001;35:34–41.

    CAS  PubMed  Google Scholar 

  120. Reason J. The human contribution - unsafe acts, accidents and heroic recoveries. Surrey: Ashgate Publishing; 2008.

    Google Scholar 

  121. Hollnagel E. Safety-I and safety-II – the past and future of safety management. Boca Raton: CRC Press; 2014.

    Google Scholar 

  122. Webster CS. The iatrogenic-harm cost equation and new technology. Anaesthesia. 2005;60:843–6.

    PubMed  Google Scholar 

  123. Reason J. Managing the risks of organisational accidents. Aldershot: Ashgate; 1997.

    Google Scholar 

  124. Webster CS, Merry AF. British syringe label “standards” are an accident waiting to happen. Anaesthesia. 2000;55:618.

    CAS  PubMed  Google Scholar 

  125. Webster CS. Doctors must implement new safety systems, not whinge about them. Anaesthesia. 2002;57:1231–2.

    CAS  PubMed  Google Scholar 

  126. Nolan TW. System changes to improve patient safety. Br Med J. 2000;320:771–3.

    CAS  Google Scholar 

  127. Perrow C. Normal accidents – living with high risk technologies. New York: Basic Books; 1984.

    Google Scholar 

  128. Webster CS, Andersson E, Edwards K, Merry AF, Torrie J, Weller JM. Deviation from accepted drug administration guidelines during anaesthesia in twenty highly realistic simulated cases. Anaesth Intensive Care. 2015;43:698–706.

    CAS  PubMed  Google Scholar 

  129. Webster CS, Merry AF. Forcing functions and their consequences. Anaesthesia. 2017;72:266–7.

    CAS  PubMed  Google Scholar 

  130. Wachter RM. The digital doctor: hope, hype, and harm at the Dawn of Medicine’s computer age. New York: McGraw-Hill; 2015.

    Google Scholar 

  131. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56.

    CAS  PubMed  Google Scholar 

  132. Anonymous. Boeing 737 Max: what went wrong? 2019. Available from: https://www.bbc.com/news/world-africa-47553174. Accessed 28 Jan 2020.

  133. Russell S. Human compatible: AI and the problem of control. London: Penguin Books; 2019.

    Google Scholar 

  134. van Waart H, Harris RJ, Gant N, et al. Deep anaesthesia: the Thailand cave rescue and its implications for management of the unconscious diver underwater. Diving Hyperb Med. 2020;50:121–9.

    PubMed  PubMed Central  Google Scholar 

  135. Mitchell SJ, Bennett MH, Bird N, et al. Recommendations for rescue of a submerged unresponsive compressed-gas diver. Undersea Hyperb Med. 2012;39:1099–108.

    CAS  PubMed  Google Scholar 

  136. Mion G, Villevieille T. Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther. 2013;19:370–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Herd D, Anderson BJ. Ketamine disposition in children presenting for procedural sedation and analgesia in a children’s emergency department. Paediatr Anaesth. 2007;17:622–9.

    PubMed  Google Scholar 

  138. Dallimore D, Anderson BJ, Short TG, Herd DW. Ketamine anesthesia in children – exploring infusion regimens. Paediatr Anaesth. 2008;18:708–14.

    PubMed  Google Scholar 

  139. Herd D, Anderson B. Lack of pharmacokinetic information in children leads clinicians to use experience and trial-and-error to determine how best to administer ketamine. Ann Emerg Med. 2007;49:824.

    PubMed  Google Scholar 

  140. Marland S, Ellerton J, Andolfatto G, et al. Ketamine: use in anesthesia. CNS Neurosci Ther. 2013;19:381–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ikeda T, Kazama T, Sessler DI, et al. Induction of anesthesia with ketamine reduces the magnitude of redistribution hypothermia. Anesth Analg. 2001;93:934–8.

    CAS  PubMed  Google Scholar 

  142. Seife C. Fingers crossed – NASA’s space station plans reveal a remarkable faith in rocket reliability. New Scientist. 1998;158:4–5.

    Google Scholar 

  143. Seife C. ISS titanic. New Scientist. 1998;160:38–41.

    Google Scholar 

  144. Chiles JR. Inviting disaster – lessons from the edge of technology. New York: Harper Collins Publishers; 2001.

    Google Scholar 

  145. Schlager N. When technology fails – significant technological disasters, accidents, and failures of the twentieth century. Gale Research: Detroit; 1994.

    Google Scholar 

  146. Anonymous. Bayesian inference. http://en.wikipedia.org/wiki/Bayesian_inference. Accessed 31 Jan 2020.

  147. Ross JF. The polar bear strategy – reflections on risk in modern life. Reading: Perseus Books; 1999.

    Google Scholar 

  148. Lomax GP. From breeder reactors to butterflies – risk, culture and biotechnology. Risk Anal. 2000;20:747–53.

    CAS  PubMed  Google Scholar 

  149. Starr C. Hypothetical fears and quantitative risk analysis. Risk Anal. 2001;21:803–6.

    CAS  PubMed  Google Scholar 

  150. Altman DG, Bland JM. Absence of evidence is not evidence of absence. Br Med J. 1995;311:485.

    CAS  Google Scholar 

  151. Webster CS. Why anaesthetising a patient is more prone to failure than flying a plane. Anaesthesia. 2002;57:819–20.

    CAS  PubMed  Google Scholar 

  152. Department of Health. An organisation with a memory – report of an expert group on learning from adverse events in the NHS. London: Stationery Office; 2000.

    Google Scholar 

  153. Spath PL. Error reduction in health care – a systems approach to improving patient care. San Francisco: Jossey-Bass; 2000.

    Google Scholar 

  154. Saunders DI, Meek T. Almost 30% of anaesthetic machines in UK do not have anti-hypoxia device. Br Med J. 2001;323:629.

    CAS  Google Scholar 

  155. Reason J. The contribution of latent human failures to the breakdown of complex systems. Philos Trans R Soc Lond B. 1990;327:475–84.

    CAS  Google Scholar 

  156. Reason J, Lucas D. Absent-mindedness in shops – its incidence, correlates and consequences. Br J Clin Psychol. 1984;23:121–31.

    PubMed  Google Scholar 

  157. Dorner D. The logic of failure – recognizing and avoiding error in complex situations. Reading: Addison-Wesley; 1997.

    Google Scholar 

  158. Klein G. Sources of power – how people make decisions. Cambridge: MIT Press; 1999.

    Google Scholar 

  159. Dennett DC. Consciousness explained. London: Penguin Books; 1991.

    Google Scholar 

  160. Marshall J. Unforgettable. New Scientist. 2008;197:30–3.

    Google Scholar 

  161. Norman D. Things that make us smart – defending human attributes in the age of the machine. Reading: Perseus; 1993.

    Google Scholar 

  162. Rasmussen J. Human errors: a taxonomy for describing human malfunction in industrial installations. J Occup Accid. 1982;4:311–33.

    Google Scholar 

  163. Rasmussen J. Skills, rules, and knowledge: signals, signs, and symbols, and other distinctions in human performance models. Trans Syst Man Cybern. 1983;13:257–66.

    Google Scholar 

  164. McCrone J. States of mind. New Scientist. 1999;161:30–3.

    Google Scholar 

  165. Nakarada-Kordic I, Weller JM, Webster CS, et al. Assessing the similarity of mental models of operating room team members and implications for patient safety: a prospective, replicated study. BMC Med Educ. 2016;16:229. https://doi.org/10.1186/s12909-016-0752-8.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Croskerry P. From mindless to mindful practice – cognitive bias and clinical decision making. N Engl J Med. 2013;368:2445–8.

    CAS  PubMed  Google Scholar 

  167. Croskerry P, Singhal G, Mamede S. Cognitive debiasing 1: origins of bias and theory of debiasing. BMJ Qual Saf. 2013;22:ii58. https://doi.org/10.1136/bmjqs-2012-001712.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Croskerry P, Singhal G, Mamede S. Cognitive debiasing 2: impediments to and strategies for change. BMJ Qual Saf. 2013;22:ii65. https://doi.org/10.1136/bmjqs-2012-001713.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Eichbaum Q. Medical error, cognitive bias, and debiasing: the jury is still out. Acad Med. 2019;94:1065–6.

    PubMed  Google Scholar 

  170. Webster CS. More on “fast” and “slow” thinking in diagnostic reasoning. Acad Med. 2015;90:3.

    PubMed  Google Scholar 

  171. Merry AF, Webster CS. Labelling and drug administration error. Anaesthesia. 1996;51:987–8.

    CAS  PubMed  Google Scholar 

  172. Salas E. Human-technology interaction in complex systems. Stamford: JAI Press; 1999.

    Google Scholar 

  173. Keers RN, Williams SD, Cooke J, Ashcroft DM. Causes of medication administration errors in hospitals: a systematic review of quantitative and qualitative evidence. Drug Saf. 2013;36:1045. https://doi.org/10.1007/s40264-013-0090-2.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Runciman WB, Sellen A, Webb RK, et al. Errors, incidents and accidents in anaesthetic practice. Anaesth Intensive Care. 1993;21:506–19.

    CAS  PubMed  Google Scholar 

  175. Gawande A. The checklist manifesto – how to get things right. New York: Metropolitan Books; 2009.

    Google Scholar 

  176. Clarke JR, Ragone AV, Greenwald L. Comparisons of survival predictions using survival risk ratios based on International Classification of Diseases, Ninth Revision and Abbreviated Injury Scale trauma diagnosis codes. J Trauma. 2005;59:567–9.

    Google Scholar 

  177. Webster CS, Anderson DJ. A practical guide to the implementation of an effective incident reporting scheme to reduce medication error on the hospital ward. Int J Nurs Pract. 2002;8:176–83.

    PubMed  Google Scholar 

  178. Reason J. Human error – models and management. BMJ. 2000;320:768–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Samkoff JS, Jacques CHM. A review of studies concerning effects of sleep deprivation and fatigue on residents’ performance. Acad Med. 1991;66:687–93.

    CAS  PubMed  Google Scholar 

  180. Krueger GP. Sustained work, fatigue, sleep loss and performance: a review of the issues. Work Stress. 1989;3:129–41.

    Google Scholar 

  181. Roth T, Roehrs TA, Carskadon MA, Dement WC. Daytime sleepiness and alertness. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: W B Saunders; 1994. p. 40–9.

    Google Scholar 

  182. Broughton RJ. Chronobiological aspects and models of sleep and napping. In: Dinges DF, Broughton RJ, editors. Sleep and alertness – chronobiological, behavioural and medical aspects of napping. New York: Raven Press; 1989. p. 71–98.

    Google Scholar 

  183. Cheeseman JF, Webster CS, Pawley MDM, Francis MA, Warman GR, Merry AF. Use of a new task-relevant test to assess the effects of shift work and drug labelling formats on anesthesia trainees’ drug recognition and confirmation. Can J Anesth. 2011;58:38–47.

    PubMed  Google Scholar 

  184. Gander PH, Millar M, Webster CS, Merry AF. Sleep loss and performance of anaesthesia trainees and specialists. Chronobiol Int. 2008;25:1077–91.

    PubMed  Google Scholar 

  185. Sturm L, Dawson D, Vaughan R, et al. Effects of fatigue on surgeon performance and surgical outcomes: a systematic review. ANZ J Surg. 2011;81:502–9.

    PubMed  Google Scholar 

  186. Howard SK, Gaba DM, Smith BE, et al. Simulation study of rested versus sleep-deprived anesthesiologists. Anesthesiology. 2003;98:1345–55.

    PubMed  Google Scholar 

  187. Biddle C, Aker J. The national study of sleep-related behaviors of nurse anesthetists: personal and professional implications. AANA J. 2011;79:324–31.

    Google Scholar 

  188. Barger LK, Ayas NT, Cade BE, et al. Impact of extended-duration shifts on medical errors, adverse events, and attentional failures. PLoS Med. 2006;3:e487.

    PubMed  PubMed Central  Google Scholar 

  189. Howard SK, Rosekind MR, Katz JD, Berry AJ. Fatigue in anesthesia – implications and strategies for patient and provider safety. Anesthesiology. 2002;97:1281–94.

    PubMed  Google Scholar 

  190. Gaba DM, Howard SK. Fatigue among clinicians and the safety of patients. N Engl J Med. 2002;347:1249.

    PubMed  Google Scholar 

  191. Landrigan CP, Rothschild JM, Cronin JW, et al. Effect of reducing interns’ work hours on serious medical errors in intensive care units. N Engl J Med. 2004;351:1838–48.

    CAS  PubMed  Google Scholar 

  192. Dawson D, Reid K. Fatigue, alcohol and performance impairment. Nature. 1997;388:235.

    CAS  PubMed  Google Scholar 

  193. Manser T, Foster S, Flin R, Patey R. Team communication during patient handover from the operating room: more than facts and figures. Hum Factors. 2013;55:138–56.

    PubMed  Google Scholar 

  194. Hannaford N, Mandel C, Crock C, et al. Learning from incident reports in the Australian medical imaging setting: handover and communication errors. Br J Radiol. 2013;86:20120336. https://doi.org/10.1259/bjr.20120336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Veasey S, Rosen R, Barzansky B, Rosen I, Owens J. Sleep loss and fatigue in residency training - a reappraisal. J Am Med Assoc. 2002;288:1116–24.

    Google Scholar 

  196. Gander PH, Merry AF, Millar MM, Weller J. Hours of work and fatigue-related error: a survey of New Zealand anaesthetists. Anaesth Intensive Care. 2000;28:178–83.

    CAS  PubMed  Google Scholar 

  197. Helmreich RL, Merritt AC. Culture at work in aviation and medicine. Aldershot: Ashgate; 2001.

    Google Scholar 

  198. de Leval MR. Human factors and surgical outcomes – a Cartesian dream. Lancet. 1997;349:723–5.

    PubMed  Google Scholar 

  199. Webster CS. Checklists, cognitive aids, and the future of patient safety. Br J Anaesth. 2017;119:178–81.

    CAS  PubMed  Google Scholar 

  200. Anonymous. Aviation safety. http://en.wikipedia.org/wiki/Aviation_safety. Accessed 31 Jan 2020.

  201. Maurino DE, Reason J, Johnston N, Lee RB. Beyond aviation human factors – safety in high technology systems. Aldershot: Ashgate Publishing Limited; 1995.

    Google Scholar 

  202. Hunt P. Safety in aviation. Perfusion. 1988;3:83–96.

    Google Scholar 

  203. Weller JM, Cumin D, Civil ID, et al. Improved scores for observed teamwork in the clinical environment following a multidisciplinary operating room simulation intervention. N Z Med J. 2016;129:59–67.

    PubMed  Google Scholar 

  204. Merry AF, Webster CS. Has anesthesia care become safer and is anesthesia-related mortality decreasing? F1000 Med Rep. 2009;1:69. https://doi.org/10.3410/M1-69.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Gaba DM, DeAnda A. A comprehensive anesthesia simulation environment: re-creating the operating room for research and training. Anesthesiology. 1988;69:387–94.

    CAS  PubMed  Google Scholar 

  206. Gaba DM, Howard SK, Fish KJ, Smith BE, Sowb YA. Simulation-based training in anesthesia crisis resource management (ACRM): a decade of experience. Simul Gaming. 2001;32:175–93.

    Google Scholar 

  207. Cumin D, Boyd MJ, Webster CS, Weller JM. A systematic review of simulation for multidisciplinary team training in operating rooms. Sim Healthcare. 2013;8:171–9.

    Google Scholar 

  208. Weller J, Henderson R, Webster CS, et al. Building the evidence on simulation validity – comparison of Anesthesiologists’ communication patterns in real and simulated cases. Anesthesiology. 2014;120:142–8.

    PubMed  Google Scholar 

  209. Weller JM, Frengley R, Torrie J, Webster CS, Tomlinson S, Henderson K. Change in attitudes and performance of critical care teams after a multi-disciplinary simulation-based intervention. Int J Med Educ. 2012;3:124–31.

    Google Scholar 

  210. Merry AF, Hannam JA, Webster CS, et al. Retesting the hypothesis of a clinical randomized controlled trial in a simulation environment to validate anesthesia simulation in error research (the VASER Study). Anesthesiology. 2017;126:472–81.

    PubMed  Google Scholar 

  211. Gaba DM. The future vision of simulation in health care. Qual Saf Health Care. 2004;13(Suppl 1):i2–i10.

    PubMed  PubMed Central  Google Scholar 

  212. Sheik-Ali S, Edgcombe H, Paton C. Next-generation virtual and augmented reality in surgical education: a narrative review. Surg Technol Int. 2019;35:27–35.

    PubMed  Google Scholar 

  213. Martini N, Farmer K, Patil S, et al. Designing and evaluating a virtual patient simulation—the journey from uniprofessional to interprofessional learning. Information. 2019;10:28. https://doi.org/10.3390/info10010028

    Google Scholar 

  214. Lingard L, Espin S, Whyte S, et al. Communication failures in the operating room: an observational classification of recurrent types and effects. Qual Saf Health Care. 2004;13:330–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Stratman RC, Wall MH. Implementation of a comprehensive drug safety program in the perioperative setting. Int Anesthesiol Clin. 2013;51:13–30.

    PubMed  Google Scholar 

  216. Roth EM, Christian CK, Gustafson M, et al. Using field observations as a tool for discovery: analysing cognitive and collaborative demands in the operating room. Cogn Tech Work. 2004;6:148–57.

    Google Scholar 

  217. Christian CK, Gustafson ML, Roth EM, et al. A prospective study of patient safety in the operating room. Surgery. 2006;139:159–73.

    PubMed  Google Scholar 

  218. Manser T. Teamwork and patient safety in dynamic domains of healthcare: a review of the literature. Acta Anaesthesiol Scand. 2009;53:143–51.

    CAS  PubMed  Google Scholar 

  219. Mishra A, Catchpole K, McCulloch P. The Oxford NOTECHS system: reliability and validity of a tool for measuring teamwork behaviour in the operating theatre. Qual Saf Health Care. 2009;18:104–8.

    CAS  PubMed  Google Scholar 

  220. Schmutz J, Manser T. Do team processes really have an effect on clinical performance? A systematic literature review. Br J Anaesth. 2013;110:529–44.

    CAS  PubMed  Google Scholar 

  221. Salas E, Sims DE, Burke CS. Is there a “big five” in teamwork? Small Group Res. 2005;36:555–99.

    Google Scholar 

  222. Australian and New Zealand College of Anaesthetists. Guidelines on sedation and/or analgesia for diagnostic and interventional medical, dental or surgical procedures (PS09). Melbourne: The College; 2014.

    Google Scholar 

  223. Catchpole KR, de Leval MR, McEwan A, et al. Patient handover from surgery to intensive care: using Formula 1 pit-stop and aviation models to improve safety and quality. Pediatr Anesth. 2007;17:470–8.

    Google Scholar 

  224. Plsek PE, Greenhalgh T. The challenge of complexity in health care. Br Med J. 2001;323:625–8.

    CAS  Google Scholar 

  225. Tenner E. Why things bite back – technology and the revenge of unintended consequences. New York: Vintage Books; 1997.

    Google Scholar 

  226. Wiener LR. Digital woes – why we should not depend on software. New York: Addison-Wesley; 1993.

    Google Scholar 

  227. Sagan SD. The limits of safety – organizations, accidents, and nuclear weapons. Princeton: Princeton University Press; 1993.

    Google Scholar 

  228. Morone JG, Woodhouse EJ. Averting catastrophe – strategies for regulating risky technologies. Los Angeles: University of California Press; 1986.

    Google Scholar 

  229. Webster CS. Health care technology, the human–machine Interface, and patient safety during intravenous anesthesia. In: Absalom AR, Mason KP, editors. Total intravenous anesthesia and target controlled infusions: a comprehensive global anthology. Cham: Springer International; 2017. p. 667–83.

    Google Scholar 

  230. Weick KE. Educational organizations as loosely coupled systems. Adm Sci Q. 1976;21:1–19.

    Google Scholar 

  231. Cook R, Rasmussen J. “Going solid”: a model of system dynamics and consequences for patient safety. Qual Saf Health Care. 2005;14:130–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Webster CS. The nuclear power industry as an alternative analogy for safety in anaesthesia and a novel approach for the conceptualisation of safety goals. Anaesthesia. 2005;60:1115–22.

    CAS  PubMed  Google Scholar 

  233. Heinrich HW. Industrial accident prevention – a scientific approach. 4th ed. New York: McGraw-Hill; 1959.

    Google Scholar 

  234. Runciman WB, Webb RK, Lee R, Holland R. System failure – an analysis of 2000 incident reports. Anaesth Intensive Care. 1993;21:684–95.

    CAS  PubMed  Google Scholar 

  235. Barach P, Small SD. Reporting and preventing medical mishaps – lessons from non-medical near miss reporting systems. Br Med J. 2000;320:759–63.

    CAS  Google Scholar 

  236. Bates DW. Medication errors – how common are they and what can be done to prevent them. Drug Saf. 1996;15:303–10.

    CAS  PubMed  Google Scholar 

  237. Berwick DM. Not again! Preventing errors lies in redesign – not exhortation. Br Med J. 2001;322:247–8.

    CAS  Google Scholar 

  238. Percarpio KB, Watts BV. A cross-sectional study on the relationship between utilization of root cause analysis and patient safety at 139 department of veterans affairs medical centers. Jt Comm J Qual Patient Saf. 2013;39:32–7.

    PubMed  Google Scholar 

  239. Peerally MF, Carr S, Waring J, Dixon-Woods M. The problem with root cause analysis. BMJ Qual Saf. 2017;26:417–22.

    PubMed  Google Scholar 

  240. Anonymous. Systems analysis of clinical incidents: the London protocol. https://www.imperial.ac.uk/patient-safety-translational-research-centre/education/training-materials-for-use-in-research-and-clinical-practice/the-london-protocol/. Accessed 31 Jan 2020.

  241. Lago P, Bizzarri G, Scalzotto F, et al. Use of FMEA analysis to reduce risk or errors in prescribing and administering drugs in paediatric wards – a quality improvement report. BMJ Open. 2012;2:e001249.

    PubMed  PubMed Central  Google Scholar 

  242. Kuo F-Y, Huang W-C, Chiou K-R, et al. The effect of failure mode and effect analysis on reducing percutaneous coronary intervention hospital door-to-balloon time and mortality in ST segment elevation myocardial infarction. BMJ Qual Saf. 2013;22:626–38.

    PubMed  Google Scholar 

  243. Belles RJ, Cletcher JW, Copinger DA, Dolan BW, Minarick JW, O’Reilly PD. 1994 accident sequence precursor program results. Nucl Saf. 1996;37:73–83.

    Google Scholar 

  244. Perin C. Operating as experimenting – synthesizing engineering and scientific values in nuclear power production. Sci Technol Human Values. 1998;23:98–128.

    Google Scholar 

  245. Webster CS. Safety in unpredictable complex systems – a framework for the analysis of safety derived from the nuclear power industry. Prometheus. 2016;34:115–32.

    Google Scholar 

  246. Cooper JB, Newbower RS, Kitz RJ. An analysis of major errors and equipment failures in anesthesia management – considerations for prevention and detection. Anesthesiology. 1984;60:34–42.

    CAS  PubMed  Google Scholar 

  247. Cooper JO, Cullen BF. Observer reliability in detecting surreptitious random occlusions of the monaural esophageal stethoscope. J Clin Monit. 1990;6:271–5.

    CAS  PubMed  Google Scholar 

  248. Langhan ML, Mallory M, Hertzog J, Lowrie L, Cravero J, Pediatric Sedation Research C. Physiologic monitoring practices during pediatric procedural sedation: a report from the Pediatric Sedation Research Consortium. Arch Pediatr Adolesc Med. 2012;166:990–8.

    PubMed  Google Scholar 

  249. Metzner J, Posner KL, Domino KB. The risk and safety of anesthesia at remote locations: the US closed claims analysis. Curr Opin Anaesthesiol. 2009;22:502–8.

    PubMed  Google Scholar 

  250. Cote CJ, Notterman DA, Karl HW, Weinberg JA, McCloskey C. Adverse sedation events in pediatrics – a critical incident analysis of contributing factors. Pediatrics. 2000;105:805.

    CAS  PubMed  Google Scholar 

  251. Lee HH, Milgrom P, Starks H, Burke W. Trends in death associated with pediatric dental sedation and general anesthesia. Pediatr Anesth. 2013;23:741–6.

    Google Scholar 

  252. Hoffman GM, Nowakowski R, Troshynski TJ, Berens RJ, Weisman SJ. Risk reduction in pediatric procedural sedation by application of an American Academy of Pediatrics/American Society of Anesthesiologists process model. Pediatrics. 2002;109:236–43.

    PubMed  Google Scholar 

  253. von Ungern-Sternberg B, Krisztina B, Chambers NA, et al. Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study. Lancet. 2010;376:773–83.

    Google Scholar 

  254. Eichhorn JH. APSF hosts medication safety conference – consensus group defines challenges and opportunities for improved practice. APSF Newsletter. 2010;25:2–8.

    Google Scholar 

  255. Pronovost P, Vohr E. Safe patients, smart hospitals. London: Hudson Street Press; 2010.

    Google Scholar 

  256. Anonymous. World alliance for patient safety. WHO guidelines for safe surgery. Geneva: World Health Organisation; 2008. Available from: http://www.who.int/patientsafety/safesurgery.

    Google Scholar 

  257. Radley DC, Wasserman MR, Olsho LEW, Shoemaker SJ, Spranca MD, Bradshaw B. Reduction in medication errors in hospitals due to adoption of computerized provider order entry systems. J Am Med Inform Assoc. 2013;20:470–6.

    PubMed  PubMed Central  Google Scholar 

  258. Sard BE, Walsh KE, Doros G, Hannon M, Moschetti W, Bauchner H. Retrospective evaluation of a computerized physician order entry adaptation to prevent prescribing errors in a pediatric emergency department. Pediatrics. 2008;122:782–7.

    PubMed  PubMed Central  Google Scholar 

  259. Potts AL, Barr FE, Gregory DF, Wright L, Patel NR. Computerized physician order entry and medication errors in a pediatric critical care unit. Pediatrics. 2004;113:59–63.

    PubMed  Google Scholar 

  260. Low DK, Reed MA, Geiduschek JM, Martin LD. Striving for a zero-error patient surgical journey through adoption of aviation-style challenge and response flow checklists: a quality improvement project. Pediatr Anesth. 2013;23:571–8.

    Google Scholar 

  261. Arriaga AF, Bader AM, Wong JM, et al. Simulation-based trial of surgical-crisis checklists. N Engl J Med. 2013;368:246–53.

    CAS  PubMed  Google Scholar 

  262. Tobin CD, Clark CA, McEvoy MD, et al. An approach to moderate sedation simulation training. Simul Healthc. 2013;8:114–23.

    PubMed  PubMed Central  Google Scholar 

  263. Amalberti R, Auroy Y, Berwick D, Barach P. Five system barriers to achieving ultrasafe health care. Ann Intern Med. 2005;142:756–64.

    PubMed  Google Scholar 

  264. Runciman B, Merry A, McCall SA. Improving patients’ safety by gathering information – anonymous reporting has an important role. BMJ. 2001;323:298.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Anonymous. WebAIRS, anaesthetic incident reporting system, Australasian and New Zealand College of Anaesthetists (ANZCA). Demonstration page: http://www.anztadc.net/Demo/IncidentTabbed.aspx. Accessed 31 Jan 2020.

  266. Anonymous. The anesthesia incident reporting system (AIRS), Anesthesia Quality Institute. http://www.aqihq.org. Accessed 31 Jan 2020.

  267. Mason KP, Green SM, Piacevoli Q, International Sedation Task Force. Adverse event reporting tool to standardize the reporting and tracking of adverse events during procedural sedation: a consensus document from the World SIVA International Sedation Task Force. Br J Anaesth. 2012;108:13–20.

    CAS  PubMed  Google Scholar 

  268. Cravero JP, Havidich JE. Pediatric sedation – evolution and revolution. Pediatr Anesth. 2011;21:800–9.

    Google Scholar 

  269. World Health Organisation. The World Health Organisation report – health systems: improving performance. Geneva: WHO; 2000.

    Google Scholar 

  270. Griffin RR, Haraden C, Nolan TW. Using care bundles to improve health care quality. Cambridge: Institute for Healthcare Improvement; 2012. Available from www.ihi.org.

    Google Scholar 

  271. Anonymous. Health quality and safety commission New Zealand. http://www.hqsc.govt.nz/. Access 31 Jan 2020.

  272. Robb E, Jarman B, Suntharalingam G, Higgens C, Tennant R, Elcock K. Using care bundles to reduce in-hospital mortality: quantitative survey. BMJ. 2010;340:c1234.

    PubMed  Google Scholar 

  273. Resar R, Pronovost P, Haraden C, Simmonds T, Rainey T, Nolan T. Using a bundle approach to improve ventilator care processes and reduce ventilator-associated pneumonia. Jt Comm J Qual Patient Saf. 2005;31:243–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Karen Domino, Dr. Karen Posner, and the American Society of Anesthesiologists Closed Claims Project for supplying the data in Table 38.4.

Authors Craig S. Webster, Michael Stabile, and Alan F. Merry own shares in Safer Sleep Limited, a company that aims to improve safety in medicine. Alan F. Merry founded and is a director of Safer Sleep Limited.

Alan F. Merry was the Foundation Chair of the Board of the Health Quality and Safety Commission in New Zealand. He is Deputy Dean of the Faculty of Medical and Health Sciences at the University of Auckland, which includes the Simulation Centre for Patient Safety (in which some of the research referenced in this chapter was conducted). He was the anesthesia lead for the development of the WHO Surgical Safety Checklist.

The remaining authors have no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Webster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Webster, C.S., Anderson, B.J., Stabile, M.J., Mitchell, S., Harris, R., Merry, A.F. (2021). Improving the Safety of Pediatric Sedation: Human Error, Technology, and Clinical Microsystems. In: Mason, MD, K.P. (eds) Pediatric Sedation Outside of the Operating Room. Springer, Cham. https://doi.org/10.1007/978-3-030-58406-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58406-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58405-4

  • Online ISBN: 978-3-030-58406-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics