Skip to main content

Pharmacokinetics and Pharmacodynamics in the Pediatric Population

  • Chapter
  • First Online:
Pediatric Sedation Outside of the Operating Room
  • 1585 Accesses

Abstract

Regulations encouraging pediatric investigation of new drugs are advancing the therapeutic pharmacopoeia, but for many commonly used medicines, the lack of well-conducted pharmacokinetic–pharmacodynamic (PKPD) studies is replaced by extrapolation from adult or nonhuman data. While neonates, infants, and children have different psychology, social structure, behavior, and disease spectrum from adults, they also share many similarities. Growth and developmental aspects account for major differences between neonates and infants and adults. Once out of infancy, body size alone can account for many of the pharmacokinetic differences between children and adults. Pharmacodynamic factors that may influence response in early life remain poorly defined. Most PK and PD differences occur in the first few years of postnatal life with major changes occurring during the neonatal period that are mature by the end of infancy (i.e., 2 years of age). Knowledge of pediatric PKPD, changes seen during growth, and maturation and drug adverse effect spectrum are essential for dosing sedatives in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grand RJ, Watkins JB, Torti FM. Development of the human intestinal tract: a review. Gastroenterology. 1976;70:790–810.

    CAS  PubMed  Google Scholar 

  2. Anderson BJ, van Lingen RA, Hansen TG, Lin YC, Holford NH. Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology. 2002;96(6):1336–45.

    CAS  PubMed  Google Scholar 

  3. Cote CJ, Karl HW, Notterman DA, Weinberg JA, McCloskey C. Adverse sedation events in pediatrics: analysis of medications used for sedation. Pediatrics. 2000;106(4):633–44.

    CAS  PubMed  Google Scholar 

  4. Pomeranz ES, Chudnofsky CR, Deegan TJ, Lozon MM, Mitchiner JC, Weber JE. Rectal methohexital sedation for computed tomography imaging of stable pediatric emergency department patients. Pediatrics. 2000;105(5):1110–4.

    CAS  PubMed  Google Scholar 

  5. Burckart GJ, White TJ 3rd, Siegle RL, Jabbour JT, Ramey DR. Rectal thiopental versus an intramuscular cocktail for sedating children before computerized tomography. Am J Hosp Pharm. 1980;37(2):222–4.

    CAS  PubMed  Google Scholar 

  6. Saint-Maurice C, Meistelman C, Rey E, Esteve C, de Lauture D, Olive G. The pharmacokinetics of rectal midazolam for premedication in children. Anesthesiology. 1986;65(5):536–8.

    CAS  PubMed  Google Scholar 

  7. Herd D, Anderson BJ. Lack of pharmacokinetic information in children leads clinicians to use experience and trial-and-error to determine how best to administer ketamine. Ann Emerg Med. 2007;49(6):824, 824.e1. https://doi.org/10.1016/j.annemergmed.2006.11.036.

  8. Mason KP, Lubisch N, Robinson F, Roskos R, Epstein MA. Intramuscular dexmedetomidine: an effective route of sedation preserves background activity for pediatric electroencephalograms. J Pediatr. 2012;161(5):927–32. https://doi.org/10.1016/j.jpeds.2012.05.011.

    Article  CAS  PubMed  Google Scholar 

  9. Mason KP, Lubisch NB, Robinson F, Roskos R. Intramuscular dexmedetomidine sedation for pediatric MRI and CT. AJR Am J Roentgenol. 2011;197(3):720–5. https://doi.org/10.2214/ajr.10.6134.

    Article  PubMed  Google Scholar 

  10. Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, Le Guen M, Fischler M, Devillier P. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134(3):366–79. https://doi.org/10.1016/j.pharmthera.2012.03.003.

    Article  CAS  PubMed  Google Scholar 

  11. Hadley G, Maconochie I, Jackson A. A survey of intranasal medication use in the paediatric emergency setting in England and Wales. Emerg Med J. 2010;27(7):553–4. https://doi.org/10.1136/emj.2009.072538.

    Article  PubMed  Google Scholar 

  12. Kidd S, Brennan S, Stephen R, Minns R, Beattie T. Comparison of morphine concentration-time profiles following intravenous and intranasal diamorphine in children. Arch Dis Child. 2009;94(12):974–8. https://doi.org/10.1136/adc.2008.140194.

    Article  CAS  PubMed  Google Scholar 

  13. Weber F, Wulf H, Gruber M, Biallas R. S-ketamine and s-norketamine plasma concentrations after nasal and i.v. administration in anesthetized children. Paediatr Anaesth. 2004;14(12):983–8.

    PubMed  Google Scholar 

  14. Borland M, Jacobs I, King B, O’Brien D. A randomized controlled trial comparing intranasal fentanyl to intravenous morphine for managing acute pain in children in the emergency department. Ann Emerg Med. 2007;49(3):335–40. https://doi.org/10.1016/j.annemergmed.2006.06.016.

    Article  PubMed  Google Scholar 

  15. Borland M, Milsom S, Esson A. Equivalency of two concentrations of fentanyl administered by the intranasal route for acute analgesia in children in a paediatric emergency department: a randomized controlled trial. Emerg Med Australas. 2011;23(2):202–8. https://doi.org/10.1111/j.1742-6723.2011.01391.x.

    Article  PubMed  Google Scholar 

  16. Furyk JS, Grabowski WJ, Black LH. Nebulized fentanyl versus intravenous morphine in children with suspected limb fractures in the emergency department: a randomized controlled trial. Emerg Med Australas. 2009;21(3):203–9. https://doi.org/10.1111/j.1742-6723.2009.01183.x.

    Article  PubMed  Google Scholar 

  17. Scheepers LD, Montgomery CJ, Kinahan AM, Dunn GS, Bourne RA, McCormack JP. Plasma concentration of flumazenil following intranasal administration in children. Can J Anaesth. 2000;47(2):120–4.

    CAS  PubMed  Google Scholar 

  18. Rey E, Delaunay L, Pons G, Murat I, Richard MO, Saint-Maurice C, Olive G. Pharmacokinetics of midazolam in children: comparative study of intranasal and intravenous administration. Eur J Clin Pharmacol. 1991;41(4):355–7.

    CAS  PubMed  Google Scholar 

  19. Iirola T, Vilo S, Manner T, Aantaa R, Lahtinen M, Scheinin M, Olkkola KT. Bioavailability of dexmedetomidine after intranasal administration. Eur J Clin Pharmacol. 2011;67(8):825–31. https://doi.org/10.1007/s00228-011-1002-y.

    Article  CAS  PubMed  Google Scholar 

  20. Li A, Yuen VM, Goulay-Dufay S, Sheng Y, Standing JF, Kwok PCL, Leung MKM, Leung AS, Wong ICK, Irwin MG. Pharmacokinetic and pharmacodynamic study of intranasal and intravenous dexmedetomidine. Br J Anaesth. 2018;120(5):960–8. https://doi.org/10.1016/j.bja.2017.11.100.

    Article  CAS  PubMed  Google Scholar 

  21. Ghai B, Jain K, Saxena AK, Bhatia N, Sodhi KS. Comparison of oral midazolam with intranasal dexmedetomidine premedication for children undergoing CT imaging: a randomized, double-blind, and controlled study. Paediatr Anaesth. 2017;27(1):37–44. https://doi.org/10.1111/pan.13010.

    Article  PubMed  Google Scholar 

  22. Larsson P, Eksborg S, Lonnqvist PA. Onset time for pharmacologic premedication with clonidine as a nasal aerosol: a double-blind, placebo-controlled, randomized trial. Pediatr Anesth. 2012;22(9):877–83. https://doi.org/10.1111/j.1460-9592.2012.03877.x.

    Article  Google Scholar 

  23. Almenrader N, Larsson P, Passariello M, Haiberger R, Pietropaoli P, Lonnqvist PA, Eksborg S. Absorption pharmacokinetics of clonidine nasal drops in children. Paediatr Anaesth. 2009;19(3):257–61. https://doi.org/10.1111/j.1460-9592.2008.02886.x.

    Article  PubMed  Google Scholar 

  24. Hippard HK, Govindan K, Friedman EM, Sulek M, Giannoni C, Larrier D, Minard CG, Watcha MF. Postoperative analgesic and behavioral effects of intranasal fentanyl, intravenous morphine, and intramuscular morphine in pediatric patients undergoing bilateral myringotomy and placement of ventilating tubes. Anesth Analg. 2012;115(2):356–63. https://doi.org/10.1213/ANE.0b013e31825afef3.

    Article  CAS  PubMed  Google Scholar 

  25. Drover DR, Hammer GB, Anderson BJ. The pharmacokinetics of ketorolac after single postoperative intranasal administration in adolescent patients. Anesth Analg. 2012;114(6):1270–6. https://doi.org/10.1213/ANE.0b013e31824f92c2.

    Article  CAS  PubMed  Google Scholar 

  26. Taddio A, Shennan AT, Stevens B, Leeder JS, Koren G. Safety of lidocaine-prilocaine cream in the treatment of preterm neonates. J Pediatr. 1995;127(6):1002–5.

    CAS  PubMed  Google Scholar 

  27. Taddio A, Stevens B, Craig K, Rastogi P, Ben-David S, Shennan A, Mulligan P, Koren G. Efficacy and safety of lidocaine-prilocaine cream for pain during circumcision. N Engl J Med. 1997;336(17):1197–201.

    CAS  PubMed  Google Scholar 

  28. Salanitre E, Rackow H. The pulmonary exchange of nitrous oxide and halothane in infants and children. Anesthesiology. 1969;30:388–94.

    CAS  PubMed  Google Scholar 

  29. Lerman J. Pharmacology of inhalational anaesthetics in infants and children. Paediatr Anaesth. 1992;2:191–203.

    Google Scholar 

  30. Lerman J, Schmitt Bantel BI, Gregory GA, Willis MM, Eger EI. Effect of age on the solubility of volatile anesthetics in human tissues. Anesthesiology. 1986;65(3):307–11.

    CAS  PubMed  Google Scholar 

  31. Malviya S, Lerman J. The blood/gas solubilities of sevoflurane, isoflurane, halothane, and serum constituent concentrations in neonates and adults. Anesthesiology. 1990;72(5):793–6.

    CAS  PubMed  Google Scholar 

  32. Sturesson LW, Johansson A, Bodelsson M, Malmkvist G. Wash-in kinetics for sevoflurane using a disposable delivery system (AnaConDa) in cardiac surgery patients. Br J Anaesth. 2009;102(4):470–6. https://doi.org/10.1093/bja/aep019.

    Article  CAS  PubMed  Google Scholar 

  33. Jephcott C, Grummet J, Nguyen N, Spruyt O. A review of the safety and efficacy of inhaled methoxyflurane as an analgesic for outpatient procedures. Br J Anaesth. 2018;120(5):1040–8. https://doi.org/10.1016/j.bja.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  34. Albani M, Wernicke I. Oral phenytoin in infancy: dose requirement, absorption, and elimination. Pediatr Pharmacol. 1983;3(3–4):229–36.

    CAS  Google Scholar 

  35. Abdel-Rahman SM, Johnson FK, Connor JD, Staiano A, Dupont C, Tolia V, Winter H, Gauthier-Dubois G, Kearns GL. Developmental pharmacokinetics and pharmacodynamics of nizatidine. J Pediatr Gastroenterol Nutr. 2004;38(4):442–51.

    CAS  PubMed  Google Scholar 

  36. de Wildt SN, de Hoog M, Vinks AA, van der Giesen E, van den Anker JN. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med. 2003;31(7):1952–858.

    PubMed  Google Scholar 

  37. Atkinson HC, Stanescu I, Anderson BJ. Increased phenylephrine plasma levels with administration of acetaminophen. N Engl J Med. 2014;370(12):1171–2. https://doi.org/10.1056/NEJMc1313942.

    Article  CAS  PubMed  Google Scholar 

  38. Atkinson HC, Stanescu I, Salem II, Potts AL, Anderson BJ. Increased bioavailability of phenylephrine by co-administration of acetaminophen: results of four open-label, crossover pharmacokinetic trials in healthy volunteers. Eur J Clin Pharmacol. 2015;71(2):151–8. https://doi.org/10.1007/s00228-014-1788-5.

    Article  CAS  PubMed  Google Scholar 

  39. Allegaert K, Anderson BJ, Vrancken M, Debeer A, Desmet K, Tibboel D, Devlieger H. Impact of a paediatric vial on the magnitude of systematic medication errors in preterm neonates: amikacin as an example. Paediatr Perinat Drug Ther. 2006;7:59–63.

    Google Scholar 

  40. Karl HW, Rosenberger JL, Larach MG, Ruffle JM. Transmucosal administration of midazolam for premedication of pediatric patients. Comparison of the nasal and sublingual routes. Anesthesiology. 1993;78(5):885–91.

    CAS  PubMed  Google Scholar 

  41. Herd DW, Salehi B. Palatability of two forms of paracetamol (acetaminophen) suspension: a randomised trial. Paediatr Perinat Drug Ther. 2006;7:189–93.

    Google Scholar 

  42. Minkowitz HS. A review of sufentanil and the sufentanil sublingual tablet system for acute moderate to severe pain. Pain Manag. 2015;5(4):237–50. https://doi.org/10.2217/pmt.15.22.

    Article  PubMed  Google Scholar 

  43. Larsson P, Nordlinder A, Bergendahl HT, Lonnqvist PA, Eksborg S, Almenrader N, Anderson BJ. Oral bioavailability of clonidine in children. Pediatr Anesth. 2011;21(3):335–40. doi:PAN3397 [pii]. https://doi.org/10.1111/j.1460-9592.2010.03397.x.

    Article  Google Scholar 

  44. Brunette KE, Anderson BJ, Thomas J, Wiesner L, Herd DW, Schulein S. Exploring the pharmacokinetics of oral ketamine in children undergoing burns procedures. Paediatr Anaesth. 2011;21(6):653–62. https://doi.org/10.1111/j.1460-9592.2011.03548.x.

    Article  PubMed  Google Scholar 

  45. Dawes JM, Cooke EM, Hannam JA, Brand KA, Winton P, Jimenez-Mendez R, Aleksa K, Lauder GR, Carleton BC, Koren G, Rieder MJ, Anderson BJ, Montgomery CJ. Oral morphine dosing predictions based on single dose in healthy children undergoing surgery. Paediatr Anaesth. 2017;27(1):28–36. https://doi.org/10.1111/pan.13020.

    Article  PubMed  Google Scholar 

  46. Anderson BJ, Holford NH. Tips and traps analyzing pediatric PK data. Pediatr Anesth. 2011;21(3):222–37. https://doi.org/10.1111/j.1460-9592.2011.03536.x.

    Article  Google Scholar 

  47. Thomas J, Corson NI, Meinhold A, Both CP. Neurological excitation in a 6-week-old male infant after morphine overdose. Pediatr Anesth. 2019;29(10):1060–1. https://doi.org/10.1111/pan.13723.

    Article  Google Scholar 

  48. Gourlay GK, Boas RA. Fatal outcome with use of rectal morphine for postoperative pain control in an infant. BMJ. 1992;304(6829):766–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28:169–81.

    CAS  PubMed  Google Scholar 

  50. Johnson KL, Erickson JP, Holley FO, et al. Fentanyl pharmacokinetics in the paediatric population. Anesthesiology. 1984;61:A441.

    Google Scholar 

  51. Meretoja OA, Wirtavuori K, Neuvonen PJ. Age-dependence of the dose-response curve of vecuronium in pediatric patients during balanced anesthesia. Anesth Analg. 1988;67(1):21–6.

    CAS  PubMed  Google Scholar 

  52. Fisher DM, Canfell PC, Spellman MJ, Miller RD. Pharmacokinetics and pharmacodynamics of atracurium in infants and children. Anesthesiology. 1990;73(1):33–7.

    CAS  PubMed  Google Scholar 

  53. Luz G, Innerhofer P, Bachmann B, Frischhut B, Menardi G, Benzer A. Bupivacaine plasma concentrations during continuous epidural anesthesia in infants and children. Anesth Analg. 1996;82(2):231–4.

    CAS  PubMed  Google Scholar 

  54. Luz G, Wieser C, Innerhofer P, Frischhut B, Ulmer H, Benzer A. Free and total bupivacaine plasma concentrations after continuous epidural anaesthesia in infants and children. Paediatr Anaesth. 1998;8(6):473–8.

    CAS  PubMed  Google Scholar 

  55. Erichsen CJ, Sjovall J, Kehlet H, Hedlund C, Arvidsson T. Pharmacokinetics and analgesic effect of ropivacaine during continuous epidural infusion for postoperative pain relief. Anesthesiology. 1996;84(4):834–42.

    CAS  PubMed  Google Scholar 

  56. Calder A, Bell GT, Andersson M, Thomson AH, Watson DG, Morton NS. Pharmacokinetic profiles of epidural bupivacaine and ropivacaine following single-shot and continuous epidural use in young infants. Paediatr Anaesth. 2012;22(5):430–7. https://doi.org/10.1111/j.1460-9592.2011.03771.x.

    Article  PubMed  Google Scholar 

  57. Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet. 1997;33(5):313–27.

    CAS  PubMed  Google Scholar 

  58. Russo H, Bressolle F. Pharmacodynamics and pharmacokinetics of thiopental. Clin Pharmacokinet. 1998;35(2):95–134. https://doi.org/10.2165/00003088-199835020-00002.

    Article  CAS  PubMed  Google Scholar 

  59. Larsson P, Anderson BJ, Norman E, Westrin P, Fellman V. Thiopentone elimination in newborn infants: exploring Michaelis-Menten kinetics. Acta Anaesthesiol Scand. 2011;55(4):444–51. https://doi.org/10.1111/j.1399-6576.2010.02380.x.

    Article  CAS  PubMed  Google Scholar 

  60. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704.

    PubMed  PubMed Central  Google Scholar 

  61. Johnson TN, Tucker GT, Tanner MS, Rostami-Hodjegan A. Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transpl. 2005;11(12):1481–93.

    PubMed  Google Scholar 

  62. Schoning M, Hartig B. Age dependence of total cerebral blood flow volume from childhood to adulthood. J Cereb Blood Flow Metab. 1996;16(5):827–33. https://doi.org/10.1097/00004647-199609000-00007.

    Article  CAS  PubMed  Google Scholar 

  63. Chiron C, Raynaud C, Maziere B, Zilbovicius M, Laflamme L, Masure MC, Dulac O, Bourguignon M, Syrota A. Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med. 1992;33(5):696–703.

    CAS  PubMed  Google Scholar 

  64. Way WL, Costley EC, Way EL. Respiratory sensitivity of the newborn infant to meperidine and morphine. Clin Pharmacol Ther. 1965;6:454–61.

    CAS  PubMed  Google Scholar 

  65. Pokela ML, Olkkola KT, Seppala T, Koivisto M. Age-related morphine kinetics in infants. Dev Pharmacol Ther. 1993;20(1–2):26–34.

    CAS  PubMed  Google Scholar 

  66. Lynn AM, Nespeca MK, Opheim KE, Slattery JT. Respiratory effects of intravenous morphine infusions in neonates, infants, and children after cardiac surgery. Anesth Analg. 1993;77(4):695–701.

    CAS  PubMed  Google Scholar 

  67. Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003;314(1):119–29. https://doi.org/10.1007/s00441-003-0751-z.

    Article  CAS  PubMed  Google Scholar 

  68. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006;1(3):223–36. https://doi.org/10.1007/s11481-006-9025-3.

    Article  PubMed  Google Scholar 

  69. Henthorn TK, Liu Y, Mahapatro M, Ng KY. Active transport of fentanyl by the blood-brain barrier. J Pharmacol Exp Ther. 1999;289(2):1084–9.

    CAS  PubMed  Google Scholar 

  70. Hamabe W, Maeda T, Kiguchi N, Yamamoto C, Tokuyama S, Kishioka S. Negative relationship between morphine analgesia and P-glycoprotein expression levels in the brain. J Pharm Sci. 2007;105(4):353–60.

    CAS  Google Scholar 

  71. Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol. 2006;25(4):231–59. https://doi.org/10.1080/10915810600746023.

    Article  CAS  PubMed  Google Scholar 

  72. Anderson BJ, Holford NHG. Negligible impact of birth on renal function and drug metabolism. Pediatr Anesth. 2018;28(11):1015–21. https://doi.org/10.1111/pan.13497.

    Article  Google Scholar 

  73. Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet. 2008;47(4):231–43.

    CAS  PubMed  Google Scholar 

  74. Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36.

    CAS  PubMed  Google Scholar 

  75. Dreyer G, Ray W. Further experiments upon the blood volume of mammals and its relation to the surface area of the body. Philos Trans R Soc Lond. 1912;202:191–212.

    Google Scholar 

  76. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–6.

    CAS  PubMed  Google Scholar 

  77. Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–32.

    CAS  PubMed  Google Scholar 

  78. Rigby-Jones AE, Priston MJ, Sneyd JR, McCabe AP, Davis GI, Tooley MA, Thorne GC, Wolf AR. Remifentanil-midazolam sedation for paediatric patients receiving mechanical ventilation after cardiac surgery. Br J Anaesth. 2007;99(2):252–61.

    CAS  PubMed  Google Scholar 

  79. Eleveld DJ, Proost JH, Vereecke H, Absalom AR, Olofsen E, Vuyk J, Struys M. An allometric model of remifentanil pharmacokinetics and pharmacodynamics. Anesthesiology. 2017;126(6):1005–18. https://doi.org/10.1097/ALN.0000000000001634.

    Article  CAS  PubMed  Google Scholar 

  80. Welzing L, Ebenfeld S, Dlugay V, Wiesen MH, Roth B, Mueller C. Remifentanil degradation in umbilical cord blood of preterm infants. Anesthesiology. 2011;114(3):570–7. https://doi.org/10.1097/ALN.0b013e318204e043.

    Article  PubMed  Google Scholar 

  81. Barker N, Lim J, Amari E, Malherbe S, Ansermino JM. Relationship between age and spontaneous ventilation during intravenous anesthesia in children. Paediatr Anaesth. 2007;17(10):948–55. https://doi.org/10.1111/j.1460-9592.2007.02301.x.

    Article  PubMed  Google Scholar 

  82. Anderson BJ. Pediatric models for adult target-controlled infusion pumps. Pediatr Anesth. 2010;20(3):223–32. doi:PAN3072 [pii]. https://doi.org/10.1111/j.1460-9592.2009.03072.x.

    Article  Google Scholar 

  83. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol. 1910;14:iv–vii.

    Google Scholar 

  84. Holford N, Heo YA, Anderson B. A pharmacokinetic standard for babies and adults. J Pharm Sci. 2013;102(9):2941–52. https://doi.org/10.1002/jps.23574.

    Article  CAS  PubMed  Google Scholar 

  85. Potts AL, Anderson BJ, Warman GR, Lerman J, Diaz SM, Vilo S. Dexmedetomidine pharmacokinetics in pediatric intensive care--a pooled analysis. Pediatr Anesth. 2009;19(11):1119–29. doi:PAN3133 [pii]. https://doi.org/10.1111/j.1460-9592.2009.03133.x.

    Article  Google Scholar 

  86. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, Chatelut E, Grubb A, Veal GJ, Keir MJ, Holford NH. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76. https://doi.org/10.1007/s00467-008-0997-5.

    Article  PubMed  Google Scholar 

  87. Vet NJ, de Hoog M, Tibboel D, de Wildt SN. The effect of critical illness and inflammation on midazolam therapy in children. Pediatr Crit Care Med. 2012;13(1):e48–50. https://doi.org/10.1097/PCC.0b013e3181fe406d.

    Article  PubMed  Google Scholar 

  88. Anderson BJ, Holford NH. Understanding dosing: children are small adults, neonates are immature children. Arch Dis Child. 2013;98(9):737–44. https://doi.org/10.1136/archdischild-2013-303720.

    Article  PubMed  Google Scholar 

  89. Johnson TN. The problems in scaling adult drug doses to children. Arch Dis Child. 2008;93(3):207–11.

    CAS  PubMed  Google Scholar 

  90. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.

    CAS  PubMed  Google Scholar 

  91. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704.

    CAS  PubMed  Google Scholar 

  92. Edginton AN, Theil FP, Schmitt W, Willmann S. Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin Drug Metab Toxicol. 2008;4(9):1143–52.

    CAS  PubMed  Google Scholar 

  93. Encinas E, Calvo R, Lukas JC, Vozmediano V, Rodriguez M, Suarez E. A predictive pharmacokinetic/pharmacodynamic model of fentanyl for analgesia/sedation in neonates based on a semi-physiologic approach. Paediatr Drugs. 2013;15(3):247–57. https://doi.org/10.1007/s40272-013-0029-1.

    Article  PubMed  Google Scholar 

  94. Hines RN, McCarver DG. The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther. 2002;300(2):355–60.

    CAS  PubMed  Google Scholar 

  95. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, Hines RN. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965–74.

    CAS  PubMed  Google Scholar 

  96. Hines RN. Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharm. 2012;452(1–2):3–7. https://doi.org/10.1016/j.ijpharm.2012.05.079.

    Article  CAS  PubMed  Google Scholar 

  97. Ward RM, Drover DR, Hammer GB, Stemland CJ, Kern S, Tristani-Firouzi M, Lugo RA, Satterfield K, Anderson BJ. The pharmacokinetics of methadone and its metabolites in neonates, infants, and children. Pediatr Anesth. 2014;24(6):591–601. https://doi.org/10.1111/pan.12385.

    Article  Google Scholar 

  98. Johnsrud EK, Koukouritaki SB, Divakaran K, Brunengraber LL, Hines RN, McCarver DG. Human hepatic CYP2E1 expression during development. J Pharmacol Exp Ther. 2003;307(1):402–7.

    CAS  PubMed  Google Scholar 

  99. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    CAS  PubMed  Google Scholar 

  100. Berde C. Convulsions associated with pediatric regional anesthesia. Anesth Analg. 1992;75:164–6.

    CAS  PubMed  Google Scholar 

  101. Anderson BJ, Hansen TG. Getting the best from pediatric pharmacokinetic data. Paediatr Anaesth. 2004;14(9):713–5.

    PubMed  Google Scholar 

  102. Anderson BJ, Larsson P. A maturation model for midazolam clearance. Pediatr Anesth. 2011;21(3):302–8. https://doi.org/10.1111/j.1460-9592.2010.03364.x.

    Article  Google Scholar 

  103. Chalkiadis GA, Abdullah F, Bjorksten AR, Clarke A, Cortinez LI, Udayasiri S, Anderson BJ. Absorption characteristics of epidural levobupivacaine with adrenaline and clonidine in children. Paediatr Anaesth. 2013;23(1):58–67. https://doi.org/10.1111/pan.12074.

    Article  PubMed  Google Scholar 

  104. Allegaert K, Holford N, Anderson BJ, Holford S, Stuber F, Rochette A, Troconiz IF, Beier H, de Hoon JN, Pedersen RS, Stamer U. Tramadol and o-desmethyl tramadol clearance maturation and disposition in humans: a pooled pharmacokinetic study. Clin Pharmacokinet. 2015;54(2):167–78. https://doi.org/10.1007/s40262-014-0191-9.

    Article  CAS  PubMed  Google Scholar 

  105. Anderson BJ, Hannam JA. A target concentration strategy to determine ibuprofen dosing in children. Pediatr Anesth. 2019;29:1107–13.

    Google Scholar 

  106. McCarver DG, Hines RN. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther. 2002;300(2):361–6.

    CAS  PubMed  Google Scholar 

  107. Holford NH, Ma SC, Anderson BJ. Prediction of morphine dose in humans. Pediatr Anesth. 2012;22(3):209–22. https://doi.org/10.1111/j.1460-9592.2011.03782.x.

    Article  Google Scholar 

  108. Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol. 2000;50(2):125–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Anderson BJ, Pons G, Autret-Leca E, Allegaert K, Boccard E. Pediatric intravenous paracetamol (propacetamol) pharmacokinetics: a population analysis. Paediatr Anaesth. 2005;15(4):282–92.

    PubMed  Google Scholar 

  110. Potts AL, Larsson P, Eksborg S, Warman G, Lonnqvist PA, Anderson BJ. Clonidine disposition in children; a population analysis. Pediatr Anesth. 2007;17(10):924–33. https://doi.org/10.1111/j.1460-9592.2007.02251.x.

    Article  Google Scholar 

  111. Anand KJ, Anderson BJ, Holford NH, Hall RW, Young T, Shephard B, Desai NS, Barton BA. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101(5):680–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Morse J, Hannam JA, Cortinez LI, Allegaert K, Anderson BJ. A manual propofol infusion regimen for neonates and infants. Paediatr Anaesth. 2019;29(9):907–14. https://doi.org/10.1111/pan.13706.

    Article  PubMed  Google Scholar 

  113. Lynn A, Nespeca MK, Bratton SL, Strauss SG, Shen DD. Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg. 1998;86(5):958–63.

    CAS  PubMed  Google Scholar 

  114. Peters JW, Anderson BJ, Simons SH, Uges DR, Tibboel D. Morphine pharmacokinetics during venoarterial extracorporeal membrane oxygenation in neonates. Intensive Care Med. 2005;31(2):257–63.

    PubMed  Google Scholar 

  115. Rigby-Jones AE, Nolan JA, Priston MJ, Wright PM, Sneyd JR, Wolf AR. Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit. Anesthesiology. 2002;97(6):1393–400.

    CAS  PubMed  Google Scholar 

  116. Peeters MY, Prins SA, Knibbe CA, Dejongh J, van Schaik RH, van Dijk M, van der Heiden IP, Tibboel D, Danhof M. Propofol pharmacokinetics and pharmacodynamics for depth of sedation in nonventilated infants after major craniofacial surgery. Anesthesiology. 2006;104(3):466–74.

    CAS  PubMed  Google Scholar 

  117. Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP, Scheinin M, Schwilden H, Schuttler J, Olkkola KT. Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth. 2012;108(3):460–8. https://doi.org/10.1093/bja/aer441.

    Article  CAS  PubMed  Google Scholar 

  118. Damian MA, Hammer GB, Elkomy MH, Frymoyer A, Drover DR, Su F. Pharmacokinetics of dexmedetomidine in infants and children after orthotopic liver transplantation. Anesth Analg. 2018. https://doi.org/10.1213/ANE.0000000000003761.

  119. Cortinez LI, Anderson BJ, Holford NH, Puga V, de la Fuente N, Auad H, Solari S, Allende FA, Ibacache M. Dexmedetomidine pharmacokinetics in the obese. Eur J Clin Pharmacol. 2015;71(12):1501–8. https://doi.org/10.1007/s00228-015-1948-2.

    Article  CAS  PubMed  Google Scholar 

  120. DeWoskin RS, Thompson CM. Renal clearance parameters for PBPK model analysis of early lifestage differences in the disposition of environmental toxicants. Regul Toxicol Pharmacol. 2008;51(1):66–86. https://doi.org/10.1016/j.yrtph.2008.02.005.

    Article  CAS  PubMed  Google Scholar 

  121. Langhendries JP, Battisti O, Bertrand JM, Francois A, Kalenga M, Darimont J, Scalais E, Wallemacq P. Adaptation in neonatology of the once-daily concept of aminoglycoside administration: evaluation of a dosing chart for amikacin in an intensive care unit. Biol Neonate. 1998;74(5):351–62.

    CAS  PubMed  Google Scholar 

  122. Fisher DM, O’Keeffe C, Stanski DR, Cronnelly R, Miller RD, Gregory GA. Pharmacokinetics and pharmacodynamics of d-tubocurarine in infants, children, and adults. Anesthesiology. 1982;57(3):203–8.

    CAS  PubMed  Google Scholar 

  123. Paap CM, Nahata MC. Prospective evaluation of ten methods for estimating creatinine clearance in children with varying degrees of renal dysfunction. J Clin Pharm Ther. 1995;20(2):67–73.

    CAS  PubMed  Google Scholar 

  124. Cole M, Price L, Parry A, Keir MJ, Pearson AD, Boddy AV, Veal GJ. Estimation of glomerular filtration rate in paediatric cancer patients using 51CR-EDTA population pharmacokinetics. Br J Cancer. 2004;90(1):60–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58(2):259–63.

    CAS  PubMed  Google Scholar 

  126. Schwartz GJ, Feld LG, Langford DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984;104(6):849–54.

    CAS  PubMed  Google Scholar 

  127. Brion LP, Fleischman AR, McCarton C, Schwartz GJ. A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr. 1986;109(4):698–707.

    CAS  PubMed  Google Scholar 

  128. Anderson BJ, Gunn TR, Holford NH, Johnson R. Caffeine overdose in a premature infant: clinical course and pharmacokinetics. Anaesth Intensive Care. 1999;27(3):307–11.

    CAS  PubMed  Google Scholar 

  129. Sawyer DC, Eger EI 2nd, Bahlman SH, Cullen BF, Impelman D. Concentration dependence of hepatic halothane metabolism. Anesthesiology. 1971;34(3):230–5.

    CAS  PubMed  Google Scholar 

  130. Herd DW, Anderson BJ, Holford NH. Modeling the norketamine metabolite in children and the implications for analgesia. Paediatr Anaesth. 2007;17(9):831–40.

    PubMed  Google Scholar 

  131. van der Marel CD, Anderson BJ, Romsing J, Jacqz-Aigrain E, Tibboel D. Diclofenac and metabolite pharmacokinetics in children. Paediatr Anaesth. 2004;14(6):443–51.

    PubMed  Google Scholar 

  132. Mandema JW, Tuk B, van Steveninck AL, Breimer DD, Cohen AF, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharm Ther. 1992;51(6):715–28.

    CAS  Google Scholar 

  133. Bouwmeester NJ, Anderson BJ, Tibboel D, Holford NH. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth. 2004;92(2):208–17.

    CAS  PubMed  Google Scholar 

  134. Wittwer E, Kern SE. Role of morphine’s metabolites in analgesia: concepts and controversies. AAPS J. 2006;8(2):E348–52.

    PubMed  PubMed Central  Google Scholar 

  135. Hannam JA, Anderson BJ. Contribution of morphine and morphine-6-glucuronide to respiratory depression in a child. Anaesth Intensive Care. 2012;40(5):867–70.

    CAS  PubMed  Google Scholar 

  136. Bouwmeester NJ, van den Anker JN, Hop WC, Anand KJ, Tibboel D. Age- and therapy-related effects on morphine requirements and plasma concentrations of morphine and its metabolites in postoperative infants. Br J Anaesth. 2003;90(5):642–52.

    CAS  PubMed  Google Scholar 

  137. Fagerlund TH, Braaten O. No pain relief from codeine...? An introduction to pharmacogenomics. Acta Anaesthesiol Scand. 2001;45(2):140–9.

    CAS  PubMed  Google Scholar 

  138. Anderson BJ, Thomas J, Ottaway K, Chalkiadis GA. Tramadol: keep calm and carry on. Pediatr Anesth. 2017;27(8):785–8. https://doi.org/10.1111/pan.13190.

    Article  Google Scholar 

  139. Kelly LE, Rieder M, van den Anker J, Malkin B, Ross C, Neely MN, Carleton B, Hayden MR, Madadi P, Koren G. More codeine fatalities after tonsillectomy in North American children. Pediatrics. 2012;129(5):e1343–7. https://doi.org/10.1542/peds.2011-2538.

    Article  PubMed  Google Scholar 

  140. Racoosin JA, Roberson DW, Pacanowski MA, Nielsen DR. New evidence about an old drug--risk with codeine after adenotonsillectomy. N Engl J Med. 2013;368(23):2155–7. https://doi.org/10.1056/NEJMp1302454.

    Article  CAS  PubMed  Google Scholar 

  141. Voelker R. Children’s deaths linked with postsurgical codeine. JAMA. 2012;308(10):963. https://doi.org/10.1001/2012.jama.11525.

    Article  CAS  PubMed  Google Scholar 

  142. Voronov P, Przybylo HJ, Jagannathan N. Apnea in a child after oral codeine: a genetic variant – an ultra-rapid metabolizer. Paediatr Anaesth. 2007;17(7):684–7. https://doi.org/10.1111/j.1460-9592.2006.02182.x.

  143. Sadhasivam S, Chidambaran V. Pharmacogenomics of opioids and perioperative pain management. Pharmacogenomics. 2012;13(15):1719–40. https://doi.org/10.2217/pgs.12.152.

    Article  CAS  PubMed  Google Scholar 

  144. Lotsch J, Skarke C, Liefhold J, Geisslinger G. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet. 2004;43(14):983–1013.

    PubMed  Google Scholar 

  145. Naguib M, Bie B, Ting AH. Fundamental concepts of epigenetics for consideration in anesthesiology. Curr Opin Anaesthesiol. 2012;25(4):434–43. https://doi.org/10.1097/ACO.0b013e3283556211.

    Article  CAS  PubMed  Google Scholar 

  146. Stephenson T. How children’s responses to drugs differ from adults. Br J Clin Pharmacol. 2005;59(6):670–3.

    PubMed  PubMed Central  Google Scholar 

  147. Allegaert K, Naulaers G, Vanhaesebrouck S, Anderson BJ. The paracetamol concentration-effect relation in neonates. Paediatr Anaesth. 2013;23(1):45–50. https://doi.org/10.1111/pan.12076.

    Article  PubMed  Google Scholar 

  148. Anderson BJ, Woollard GA, Holford NH. Acetaminophen analgesia in children: placebo effect and pain resolution after tonsillectomy. Eur J Clin Pharmacol. 2001;57(8):559–69.

    CAS  PubMed  Google Scholar 

  149. LeDez KM, Lerman J. The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology. 1987;67(3):301–7.

    CAS  PubMed  Google Scholar 

  150. Keenan RL, Shapiro JH, Kane FR, Simpson PM. Bradycardia during anesthesia in infants. An epidemiologic study. Anesthesiology. 1994;80(5):976–82.

    CAS  PubMed  Google Scholar 

  151. Jonmarker C, Westrin P, Larsson S, Werner O. Thiopental requirements for induction of anesthesia in children. Anesthesiology. 1987;67(1):104–7.

    CAS  PubMed  Google Scholar 

  152. Westrin P, Jonmarker C, Werner O. Thiopental requirements for induction of anesthesia in neonates and in infants one to six months of age. Anesthesiology. 1989;71(3):344–6.

    CAS  PubMed  Google Scholar 

  153. Meakin G, Morton RH, Wareham AC. Age-dependent variation in response to tubocurarine in the isolated rat diaphragm. Br J Anaesth. 1992;68(2):161–3.

    CAS  PubMed  Google Scholar 

  154. Wareham AC, Morton RH, Meakin GH. Low quantal content of the endplate potential reduces safety factor for neuromuscular transmission in the diaphragm of the newborn rat. Br J Anaesth. 1994;72(2):205–9.

    CAS  PubMed  Google Scholar 

  155. Radford D. Side effects of verapamil in infants. Arch Dis Child. 1983;58(6):465–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Cornelissen L, Kim SE, Lee JM, Brown EN, Purdon PL, Berde CB. Electroencephalographic markers of brain development during sevoflurane anaesthesia in children up to 3 years old. Br J Anaesth. 2018;120(6):1274–86. https://doi.org/10.1016/j.bja.2018.01.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cornelissen L, Kim SE, Purdon PL, Brown EN, Berde CB. Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants. Elife. 2015;4:e06513. https://doi.org/10.7554/eLife.06513.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Cheung YM, Scoones GP, Hoeks SE, Stolker RJ, Weber F. Evaluation of the aepEX monitor of hypnotic depth in pediatric patients receiving propofol-remifentanil anesthesia. Paediatr Anaesth. 2013;23(10):891–7. https://doi.org/10.1111/pan.12235.

    Article  PubMed  Google Scholar 

  159. Hoffman GM, Nowakowski R, Troshynski TJ, Berens RJ, Weisman SJ. Risk reduction in pediatric procedural sedation by application of an American Academy of Pediatrics/American Society of Anesthesiologists process model. Pediatrics. 2002;109(2):236–43.

    PubMed  Google Scholar 

  160. Herd DW, Anderson BJ, Keene NA, Holford NH. Investigating the pharmacodynamics of ketamine in children. Paediatr Anaesth. 2008;18(1):36–42.

    PubMed  Google Scholar 

  161. Crellin D, Sullivan TP, Babl FE, O’Sullivan R, Hutchinson A. Analysis of the validation of existing behavioral pain and distress scales for use in the procedural setting. Paediatr Anaesth. 2007;17(8):720–33.

    PubMed  Google Scholar 

  162. von Baeyer CL, Spagrud LJ. Systematic review of observational (behavioral) measures of pain for children and adolescents aged 3 to 18 years. Pain. 2007;127(1–2):140–50.

    Google Scholar 

  163. Schade JG, Joyce BA, Gerkensmeyer J, Keck JF. Comparison of three preverbal scales for postoperative pain assessment in a diverse pediatric sample. J Pain Symptom Manag. 1996;12(6):348–59.

    CAS  Google Scholar 

  164. van Dijk M, Peters JW, van Deventer P, Tibboel D. The COMFORT behavior scale: a tool for assessing pain and sedation in infants. Am J Nurs. 2005;105(1):33–6.

    PubMed  Google Scholar 

  165. van Dijk M, Roofthooft DW, Anand KJ, Guldemond F, de Graaf J, Simons S, de Jager Y, van Goudoever JB, Tibboel D. Taking up the challenge of measuring prolonged pain in (premature) neonates: the COMFORTneo scale seems promising. Clin J Pain. 2009;25(7):607–16. https://doi.org/10.1097/AJP.0b013e3181a5b52a.

    Article  PubMed  Google Scholar 

  166. Bai J, Hsu L, Tang Y, van Dijk M. Validation of the COMFORT behavior scale and the FLACC scale for pain assessment in Chinese children after cardiac surgery. Pain Manag Nurs. 2012;13(1):18–26. https://doi.org/10.1016/j.pmn.2010.07.002.

    Article  PubMed  Google Scholar 

  167. Valkenburg AJ, Boerlage AA, Ista E, Duivenvoorden HJ, Tibboel D, van Dijk M. The COMFORT-behavior scale is useful to assess pain and distress in 0- to 3-year-old children with Down syndrome. Pain. 2011;152(9):2059–64. https://doi.org/10.1016/j.pain.2011.05.001.

    Article  PubMed  Google Scholar 

  168. Green SM, Mason KP. Stratification of sedation risk--a challenge to the sedation continuum. Paediatr Anaesth. 2011;21(9):924–31. https://doi.org/10.1111/j.1460-9592.2011.03609.x.

    Article  PubMed  Google Scholar 

  169. Mason KP, Green SM, Piacevoli Q. Adverse event reporting tool to standardize the reporting and tracking of adverse events during procedural sedation: a consensus document from the World SIVA International Sedation Task Force. Br J Anaesth. 2012;108(1):13–20. https://doi.org/10.1093/bja/aer407.

    Article  CAS  PubMed  Google Scholar 

  170. Anderson BJ, Allegaert K, Holford NH. Population clinical pharmacology of children: general principles. Eur J Pediatr. 2006;165(11):741–6.

    PubMed  Google Scholar 

  171. Anderson BJ, Allegaert K, Holford NH. Population clinical pharmacology of children: modelling covariate effects. Eur J Pediatr. 2006;165(12):819–29.

    PubMed  Google Scholar 

  172. Holford NHG. The target concentration approach to clinical drug development. Clin Pharmacokinet. 1995;29(5):287–91.

    CAS  PubMed  Google Scholar 

  173. Potts AL, Warman GR, Anderson BJ. Dexmedetomidine disposition in children: a population analysis. Paediatr Anaesth. 2008;18(8):722–30.

    PubMed  Google Scholar 

  174. Allegaert K, Anderson BJ, Verbesselt R, Debeer A, de Hoon J, Devlieger H, Van Den Anker JN, Tibboel D. Tramadol disposition in the very young: an attempt to assess in vivo cytochrome P-450 2D6 activity. Br J Anaesth. 2005;95(2):231–9.

    CAS  PubMed  Google Scholar 

  175. Hayden JC, Bardol M, Doherty DR, Dawkins I, Healy M, Breatnach CV, Gallagher PJ, Cousins G, Standing JF. Optimising clonidine dosage for sedation in mechanically ventilated children: a pharmacokinetic simulation study. Pediatr Anaesth. 2019;29(10):1002–10.

    Google Scholar 

  176. Hull CJ. How far can we go with compartmental models? Anesthesiology. 1990;72(3):399–402.

    CAS  PubMed  Google Scholar 

  177. Boer F. Drug handling by the lungs. Br J Anaesth. 2003;91(1):50–60.

    CAS  PubMed  Google Scholar 

  178. Reekers M, Boer F, Vuyk J. Basic concepts of recirculatory pharmacokinetic modelling. Adv Exp Med Biol. 2003;523:19–26.

    CAS  PubMed  Google Scholar 

  179. Krejcie TC, Avram MJ. What determines anesthetic induction dose? It’s the front-end kinetics, doctor! Anesth Analg. 1999;89(3):541–4.

    CAS  PubMed  Google Scholar 

  180. Kuipers JA, Boer F, Olofsen E, Bovill JG, Burm AG. Recirculatory pharmacokinetics and pharmacodynamics of rocuronium in patients: the influence of cardiac output. Anesthesiology. 2001;94(1):47–55.

    CAS  PubMed  Google Scholar 

  181. Enlund M, Kietzmann D, Bouillon T, Zuchner K, Meineke I. Population pharmacokinetics of sevoflurane in conjunction with the AnaConDa: toward target-controlled infusion of volatiles into the breathing system. Acta Anaesthesiol Scand. 2008;52(4):553–60. https://doi.org/10.1111/j.1399-6576.2008.01579.x.

    Article  CAS  PubMed  Google Scholar 

  182. Wada DR, Drover DR, Lemmens HJ. Determination of the distribution volume that can be used to calculate the intravenous loading dose. Clin Pharmacokinet. 1998;35(1):1–7.

    CAS  PubMed  Google Scholar 

  183. McFarlan CS, Anderson BJ, Short TG. The use of propofol infusions in paediatric anaesthesia: a practical guide. Paediatr Anaesth. 1999;9(3):209–16.

    CAS  PubMed  Google Scholar 

  184. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76(3):334–41.

    CAS  PubMed  Google Scholar 

  185. Mould DR, DeFeo TM, Reele S, Milla G, Limjuco R, Crews T, Choma N, Patel IH. Simultaneous modeling of the pharmacokinetics and pharmacodynamics of midazolam and diazepam. Clin Pharmacol Ther. 1995;58(1):35–43. https://doi.org/10.1016/0009-9236(95)90070-5.

    Article  CAS  PubMed  Google Scholar 

  186. Buhrer M, Maitre PO, Crevoisier C, Stanski DR. Electroencephalographic effects of benzodiazepines. II. Pharmacodynamic modeling of the electroencephalographic effects of midazolam and diazepam. Clin Pharmacol Ther. 1990;48(5):555–67.

    CAS  PubMed  Google Scholar 

  187. Goodchild CS, Serrao JM, Sear JW, Anderson BJ. Pharmacokinetic and pharmacodynamic analysis of afaxalone administered as a bolus intravenous injection of phaxan in a phase 1 randomized trial. Anesth Analg. 2019. https://doi.org/10.1213/ANE.0000000000004204.

  188. Olofsen E, Dahan A. The dynamic relationship between end-tidal sevoflurane and isoflurane concentrations and bispectral index and spectral edge frequency of the electroencephalogram. Anesthesiology. 1999;90(5):1345–53.

    CAS  PubMed  Google Scholar 

  189. Larsson P, Anderson BJ, Goobie SM. Dosing clonidine for sedation in intensive care. Paediatr Anaesth. 2019;29(10):983–4. https://doi.org/10.1111/pan.13719.

    Article  PubMed  Google Scholar 

  190. Potts AL, Anderson BJ, Holford NH, Vu TC, Warman GR. Dexmedetomidine hemodynamics in children after cardiac surgery. Paediatr Anaesth. 2010;20(5):425–33. doi:PAN3285 [pii]. https://doi.org/10.1111/j.1460-9592.2010.03285.x.

    Article  PubMed  Google Scholar 

  191. Dixon WJ. Staircase bioassay: the up-and-down method. Neurosci Biobehav Rev. 1991;15(1):47–50.

    CAS  PubMed  Google Scholar 

  192. Gorges M, Zhou G, Brant R, Ansermino JM. Sequential allocation trial design in anesthesia: an introduction to methods, modeling, and clinical applications. Paediatr Anaesth. 2017;27(3):240–7. https://doi.org/10.1111/pan.13088.

    Article  PubMed  Google Scholar 

  193. Frawley G, Skinner A, Thomas J, Smith S. Ropivacaine spinal anesthesia in neonates: a dose range finding study. Paediatr Anaesth. 2007;17(2):126–32.

    PubMed  Google Scholar 

  194. Frawley GP, Downie S, Huang GH. Levobupivacaine caudal anaesthesia in children: a randomised double blind comparison with bupivacaine. Paediatr Anesth. 2006;16(7):754–60.

    Google Scholar 

  195. Frawley GP, Farrell T, Smith S. Levobupivacaine spinal anesthesia in neonates: a dose range finding study. Paediatr Anaesth. 2004;14(10):838–44.

    PubMed  Google Scholar 

  196. Holford NHG, Sheiner LB. Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet. 1981;6:429–53.

    CAS  PubMed  Google Scholar 

  197. Albrecht S, Ihmsen H, Hering W, Geisslinger G, Dingemanse J, Schwilden H, Schuttler J. The effect of age on the pharmacokinetics and pharmacodynamics of midazolam. Clin Pharmacol Ther. 1999;65(6):630–9. https://doi.org/10.1016/s0009-9236(99)90084-x.

    Article  CAS  PubMed  Google Scholar 

  198. Platten HP, Schweizer E, Dilger K, Mikus G, Klotz U. Pharmacokinetics and the pharmacodynamic action of midazolam in young and elderly patients undergoing tooth extraction. Clin Pharmacol Ther. 1998;63(5):552–60. https://doi.org/10.1016/s0009-9236(98)90106-0.

    Article  CAS  PubMed  Google Scholar 

  199. West D, West BJ. Physiologic time: a hypothesis. Phys Life Rev. 2013;10(2):210–24. https://doi.org/10.1016/j.plrev.2013.04.006.

    Article  PubMed  Google Scholar 

  200. Anderson BJ, Meakin GH. Scaling for size: some implications for paediatric anaesthesia dosing. Paediatr Anaesth. 2002;12(3):205–19.

    PubMed  Google Scholar 

  201. Jeleazcov C, Ihmsen H, Schmidt J, Ammon C, Schwilden H, Schuttler J, Fechner J. Pharmacodynamic modelling of the bispectral index response to propofol-based anaesthesia during general surgery in children. Br J Anaesth. 2008;100(4):509–16.

    CAS  PubMed  Google Scholar 

  202. Fuentes R, Cortinez LI, Contreras V, Ibacache M, Anderson BJ. Propofol pharmacokinetic and pharmacodynamic profile and its electroencephalographic interaction with remifentanil in children. Pediatr Anesth. 2018;28(12):1079–85. https://doi.org/10.1111/pan.13486.

    Article  Google Scholar 

  203. Cortinez LI, Anderson BJ. Modeling the pharmacokinetics and pharmacodynamics of sevoflurane using compartment models in children and adults. Pediatr Anesth. 2018;28(10):834–40. https://doi.org/10.1111/pan.13465.

    Article  Google Scholar 

  204. Linden G, Henderson BE. Genital-tract cancers in adolescents and young adults. N Engl J Med. 1972;286(14):760–1.

    CAS  PubMed  Google Scholar 

  205. Barnes RK. “Pediatric anesthetic neurotoxicity”: time to stop! Anesth Analg. 2019. https://doi.org/10.1213/ANE.0000000000004529.

  206. Anderson BJ, Ralph CJ, Stewart AW, Barber C, Holford NH. The dose-effect relationship for morphine and vomiting after day-stay tonsillectomy in children. Anaesth Intensive Care. 2000;28(2):155–60.

    CAS  PubMed  Google Scholar 

  207. Weinstein MS, Nicolson SC, Schreiner MS. A single dose of morphine sulfate increases the incidence of vomiting after outpatient inguinal surgery in children. Anesthesiology. 1994;81(3):572–7.

    CAS  PubMed  Google Scholar 

  208. Ansermino M, Basu R, Vandebeek C, Montgomery C. Nonopioid additives to local anaesthetics for caudal blockade in children: a systematic review. Paediatr Anaesth. 2003;13(7):561–73.

    PubMed  Google Scholar 

  209. Welzing L, Kribs A, Eifinger F, Huenseler C, Oberthuer A, Roth B. Propofol as an induction agent for endotracheal intubation can cause significant arterial hypotension in preterm neonates. Paediatr Anaesth. 2010;20(7):605–11. doi:PAN3330 [pii]. https://doi.org/10.1111/j.1460-9592.2010.03330.x.

    Article  PubMed  Google Scholar 

  210. Lerman J, Heard C, Steward DJ. Neonatal tracheal intubation: an imbroglio unresolved. Pediatr Anesth. 2010;20(7):585–90. doi:PAN3356 [pii]. https://doi.org/10.1111/j.1460-9592.2010.03356.x.

    Article  Google Scholar 

  211. Hannam JA, Anderson BJ. Pharmacodynamic interaction models in pediatric anesthesia. Pediatr Anesth. 2015;25:970–80. https://doi.org/10.1111/pan.12735.

    Article  Google Scholar 

  212. Strolin Benedetti M, Ruty B, Baltes E. Induction of endogenous pathways by antiepileptics and clinical implications. Fundam Clin Pharmacol. 2005;19(5):511–29. https://doi.org/10.1111/j.1472-8206.2005.00341.x.

    Article  CAS  PubMed  Google Scholar 

  213. Eker HE, Yalcin Cok O, Aribogan A, Arslan G. Children on phenobarbital monotherapy requires more sedatives during MRI. Pediatric Anesthesia. 2011;10(10):998–1002. https://doi.org/10.1111/j.1460-9592.2011.03606.x.

    Article  Google Scholar 

  214. Stanski DR, Ham J, Miller RD, Sheiner LB. Pharmacokinetics and pharmacodynamics of d-tubocurarine during nitrous oxide-narcotic and halothane anesthesia in man. Anesthesiology. 1979;51(3):235–41.

    CAS  PubMed  Google Scholar 

  215. Prys-Roberts C, Lloyd JW, Fisher A, et al. Deliberate profound hypotension induced with halothane: studies of haemodynamics and pulmonary gas exchange. Br J Anaesth. 1974;46:105.

    CAS  PubMed  Google Scholar 

  216. Pauca AL, Hopkins AM. Acute effects of halothane, nitrous oxide and thiopentone on upper limb blood flow. Br J Anaesth. 1972;43:326–33.

    Google Scholar 

  217. Taivainen T, Meretoja OA. The neuromuscular blocking effects of vecuronium during sevoflurane, halothane and balanced anaesthesia in children. Anaesthesia. 1995;50(12):1046–9.

    CAS  PubMed  Google Scholar 

  218. Minto C, Vuyk J. Response surface modelling of drug interactions. Adv Exp Med Biol. 2003;523:35–43.

    CAS  PubMed  Google Scholar 

  219. Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, Shafer SL. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004;100(6):1353–72.

    CAS  PubMed  Google Scholar 

  220. Dahan A, Nieuwenhuijs D, Olofsen E, Sarton E, Romberg R, Teppema L. Response surface modeling of alfentanil-sevoflurane interaction on cardiorespiratory control and bispectral index. Anesthesiology. 2001;94(6):982–91.

    CAS  PubMed  Google Scholar 

  221. Nieuwenhuijs DJ, Olofsen E, Romberg RR, Sarton E, Ward D, Engbers F, Vuyk J, Mooren R, Teppema LJ, Dahan A. Response surface modeling of remifentanil-propofol interaction on cardiorespiratory control and bispectral index. Anesthesiology. 2003;98(2):312–22.

    CAS  PubMed  Google Scholar 

  222. Andolfatto G, Abu-Laban RB, Zed PJ, Staniforth SM, Stackhouse S, Moadebi S, Willman E. Ketamine-propofol combination (ketofol) versus propofol alone for emergency department procedural sedation and analgesia: a randomized double-blind trial. Ann Emerg Med. 2012;59(6):504–12.e1–2. https://doi.org/10.1016/j.annemergmed.2012.01.017.

  223. Hui TW, Short TG, Hong W, Suen T, Gin T, Plummer J. Additive interactions between propofol and ketamine when used for anesthesia induction in female patients. Anesthesiology. 1995;82(3):641–8.

    CAS  PubMed  Google Scholar 

  224. Dallimore D, Anderson BJ, Short TG, Herd DW. Ketamine anesthesia in children--exploring infusion regimens. Paediatr Anaesth. 2008;18(8):708–14.

    PubMed  Google Scholar 

  225. Coulter FL, Hannam JA, Anderson BJ. Ketofol simulations for dosing in pediatric anesthesia. Pediatr Anesth. 2014;24(8):806–12. https://doi.org/10.1111/pan.12386.

    Article  Google Scholar 

  226. Char D, Drover DR, Motonaga KS, Gupta S, Miyake CY, Dubin AM, Hammer GB. The effects of ketamine on dexmedetomidine-induced electrophysiologic changes in children. Paediatr Anaesth. 2013;23(10):898–905. https://doi.org/10.1111/pan.12143.

    Article  PubMed  Google Scholar 

  227. Ramsay MAE. Intensive care: problems of over- and undersedation. Best Pract Res Clin Anaesthesiol. 2000;14(2):419–32.

    CAS  Google Scholar 

  228. Herd D, Anderson BJ. Ketamine disposition in children presenting for procedural sedation and analgesia in a children’s emergency department. Paediatr Anaesth. 2007;17(7):622–9.

    PubMed  Google Scholar 

  229. Dallimore D, Herd DW, Short T, Anderson BJ. Dosing ketamine for pediatric procedural sedation in the emergency department. Pediatr Emerg Care. 2008;24(8):529–33.

    PubMed  Google Scholar 

  230. Booker PD, Taylor C, Saba G. Perioperative changes in alpha l-acid glycoprotein concentrations in infants undergoing major surgery. Br J Anaesth. 1996;76:365–8.

    CAS  PubMed  Google Scholar 

  231. Holford S, Allegaert K, Anderson BJ, et al. Parent-metabolite pharmacokinetic models for tramadol: tests of assumptions and predictions. J Pharmacol Clin Toxicol. 2014;2(1):1023.

    Google Scholar 

  232. Wolf A, Blackwood B, Anderson BJ. Tolerance to sedative drugs in PICU: can it be moderated or is it immutable? Intensive Care Med. 2016;42(2):278–81.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, B.J. (2021). Pharmacokinetics and Pharmacodynamics in the Pediatric Population. In: Mason, MD, K.P. (eds) Pediatric Sedation Outside of the Operating Room. Springer, Cham. https://doi.org/10.1007/978-3-030-58406-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58406-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58405-4

  • Online ISBN: 978-3-030-58406-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics