Skip to main content

Characterization of Proteoglycanomes by Mass Spectrometry

  • Chapter
  • First Online:
Extracellular Matrix Omics

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 7))

Abstract

As composites of a core protein and several chemically distinct types of glycosaminoglycan (GAG) chains, proteoglycans are diverse molecules that occupy a unique niche in biology. They have varied and essential roles as structural and regulatory molecules in numerous physiological processes and disease pathology. In regard to cellular context, some link the interior of the cell to the extracellular matrix (ECM) as transmembrane or membrane-anchored molecules with a major role in cell adhesion and signal transduction. Others reside in pericellular matrix, where they influence crucial aspects of cell behavior, and several reside in interstitial ECM as components of structural macromolecular networks. Because of their unique composition, they can be challenging to identify and characterize using conventional biochemical or antibody-based methods. In contrast, the GAG component, despite its immense chemical diversity, typically carries a strong net negative charge which can be exploited to advantage for affinity-isolation and enrichment of proteoglycans from any biological system in a core protein-, GAG-, tissue-, and species-agnostic manner by anion exchange chromatography. This method, when coupled with high resolution liquid-chromatography tandem mass spectrometry (LC-MS/MS) can be used to define the proteoglycanome of any cell type, tissue or organism. A proteoglycanomics strategy can be further refined by inclusion of additional orthogonal affinity steps or fractionation for greater specificity and to deliver proteoglycans with distinct specified characteristics. Moreover, elimination of the GAG chain chemically and/or obliteration of the core protein enables glycomics characterization of GAG structure. Enzymatic digestion of GAGs on tryptic peptides allows mapping of glycopeptides, which has been used for identification of novel proteoglycans and to precisely define sites of GAG attachment. Recent application of proteoglycanomics to human aorta and human aortic aneurysms demonstrated its potential to identify tissue and disease proteoglycanomes and the detailed method that was used is provided here for application to other tissues or biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandari S et al (2015) Sweet on Hedgehogs: regulatory roles of heparan sulfate proteoglycans in Hedgehog-dependent cell proliferation and differentiation. Curr Protein Pept Sci 16(1):66–76

    Article  CAS  Google Scholar 

  • Bartlett AH, Hayashida K, Park PW (2007) Molecular and cellular mechanisms of syndecans in tissue injury and inflammation. Mol Cells 24(2):153–166

    CAS  PubMed  Google Scholar 

  • Brinkmann T, Weilke C, Kleesiek K (1997) Recognition of acceptor proteins by UDP-D-xylose proteoglycan core protein beta-D-xylosyltransferase. J Biol Chem 272(17):11171–11175

    Article  CAS  Google Scholar 

  • Buschmann MD, Grodzinsky AJ (1995) A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 117(2):179–192

    Article  CAS  Google Scholar 

  • Calabro A et al (2001) Fluorophore-assisted carbohydrate electrophoresis (FACE) of glycosaminoglycans. Osteoarthritis Cartilage 9(Suppl A):S16–S22

    Article  Google Scholar 

  • Carrino DA, Arias JL, Caplan AI (1991) A spectrophotometric modification of a sensitive densitometric Safranin O assay for glycosaminoglycans. Biochem Int 24(3):485–495

    CAS  PubMed  Google Scholar 

  • Carrino DA et al (1994) Identity of the core proteins of the large chondroitin sulphate proteoglycans synthesized by skeletal muscle and prechondrogenic mesenchyme. Biochem J 298(Pt 1):51–60

    Article  CAS  Google Scholar 

  • Cikach FS et al (2018) Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection. JCI Insight 3(5)

    Google Scholar 

  • Didangelos A et al (2012) Novel role of ADAMTS-5 protein in proteoglycan turnover and lipoprotein retention in atherosclerosis. J Biol Chem 287(23):19341–19345

    Article  CAS  Google Scholar 

  • Ezura Y et al (2000) Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J Cell Biol 151(4):779–788

    Article  CAS  Google Scholar 

  • Fawcett JW, Oohashi T, Pizzorusso T (2019) The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 20(8):451–465

    Article  CAS  Google Scholar 

  • Filmus J, Capurro M (2014) The role of glypicans in Hedgehog signaling. Matrix Biol 35:248–252

    Article  CAS  Google Scholar 

  • Funderburgh JL (2002) Keratan sulfate biosynthesis. IUBMB Life 54(4):187–194

    Article  CAS  Google Scholar 

  • Gomez Toledo A et al (2015) Positive mode LC-MS/MS analysis of chondroitin sulfate modified glycopeptides derived from light and heavy chains of the human inter-alpha-trypsin inhibitor complex. Mol Cell Proteomics 14(12):3118–3131

    Article  Google Scholar 

  • Gondelaud F, Ricard-Blum S (2019) Structures and interactions of syndecans. FEBS J 286(15):2994–3007

    Article  CAS  Google Scholar 

  • Hascall VC, Heinegard D (1974) Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid. J Biol Chem 249(13):4232–4241

    CAS  PubMed  Google Scholar 

  • Heinegard D, Saxne T (2011) The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 7(1):50–56

    Article  Google Scholar 

  • Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

    Article  CAS  Google Scholar 

  • Ly L, Wasinger VC (2011) Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome. Proteomics 11(4):513–534

    Article  CAS  Google Scholar 

  • Mead TJ et al (2018) ADAMTS9-regulated pericellular matrix dynamics governs focal adhesion-dependent smooth muscle differentiation. Cell Rep 23(2):485–498

    Article  CAS  Google Scholar 

  • Midura RJ et al (2018) Quantification of hyaluronan (HA) using a simplified fluorophore-assisted carbohydrate electrophoresis (FACE) procedure. Methods Cell Biol 143:297–316

    Article  CAS  Google Scholar 

  • Mitsou I, Multhaupt HAB, Couchman JR (2017) Proteoglycans, ion channels and cell-matrix adhesion. Biochem J 474(12):1965–1979

    Article  CAS  Google Scholar 

  • Nastase MV et al (2018) Small leucine-rich proteoglycans in renal inflammation: two sides of the coin. J Histochem Cytochem 66(4):261–272

    Article  CAS  Google Scholar 

  • Noborn F et al (2015) Identification of chondroitin sulfate linkage region glycopeptides reveals prohormones as a novel class of proteoglycans. Mol Cell Proteomics 14(1):41–49

    Article  CAS  Google Scholar 

  • Noborn F et al (2016) Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans. Sci Rep 6:34537

    Article  CAS  Google Scholar 

  • Noborn F et al (2018) Expanding the chondroitin glycoproteome of Caenorhabditis elegans. J Biol Chem 293(1):379–389

    Article  CAS  Google Scholar 

  • Ortmann C et al (2015) Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans. J Cell Sci 128(12):2374–2385

    Article  CAS  Google Scholar 

  • Robinson KA et al (2017) Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons. Matrix Biol 64:81–93

    Article  CAS  Google Scholar 

  • Rojas-Macias MA et al (2019) Towards a standardized bioinformatics infrastructure for N- and O-glycomics. Nat Commun 10(1):3275

    Article  Google Scholar 

  • Rowlands D et al (2018) Aggrecan directs extracellular matrix-mediated neuronal plasticity. J Neurosci 38(47):10102–10113

    Article  CAS  Google Scholar 

  • Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7)

    Google Scholar 

  • Scott JE (1985) Proteoglycan histochemistry–a valuable tool for connective tissue biochemists. Coll Relat Res 5(6):541–575

    Article  CAS  Google Scholar 

  • Suna G et al (2018) Extracellular matrix proteomics reveals interplay of aggrecan and aggrecanases in vascular remodeling of stented coronary arteries. Circulation 137(2):166–183

    Article  CAS  Google Scholar 

  • Talusan P et al (2005) Analysis of intimal proteoglycans in atherosclerosis-prone and atherosclerosis-resistant human arteries by mass spectrometry. Mol Cell Proteomics 4(9):1350–1357

    Article  CAS  Google Scholar 

  • Thelin MA et al (2013) Biological functions of iduronic acid in chondroitin/dermatan sulfate. FEBS J 280(10):2431–2446

    Article  CAS  Google Scholar 

  • Tsien RY (2013) Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci U S A 110(30):12456–12461

    Article  CAS  Google Scholar 

  • van Wijk XM, van Kuppevelt TH (2014) Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 17(3):443–462

    PubMed  Google Scholar 

  • Vijayagopal P et al (1996) Isolation and characterization of a proteoglycan variant from human aorta exhibiting a marked affinity for low density lipoprotein and demonstration of its enhanced expression in atherosclerotic plaques. Atherosclerosis 127(2):195–203

    Article  CAS  Google Scholar 

  • Wight TN, Merrilees MJ (2004) Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 94(9):1158–1167

    Article  CAS  Google Scholar 

  • Yu WH, Woessner JF Jr (2000) Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275(6):4183–4191

    Article  CAS  Google Scholar 

  • Zhang G et al (2006) Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J Cell Biochem 98(6):1436–1449

    Article  CAS  Google Scholar 

  • Zimmermann DR, Dours-Zimmermann MT (2008) Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130(4):635–653

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to David A. Carrino, PhD for providing instruction in the proteoglycan isolation and quantitation methods used here and Belinda Willard PhD and Ling Li PhD of the Lerner Research Institute Proteomics and Metabolomics core for guidance in mass spectrometry. This work was supported by the Allen Distinguished Investigator Program, through support made by The Paul G. Allen Frontiers Group and the American Heart Association (to S.S.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneel S. Apte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koch, C.D., Apte, S.S. (2020). Characterization of Proteoglycanomes by Mass Spectrometry. In: Ricard-Blum, S. (eds) Extracellular Matrix Omics. Biology of Extracellular Matrix, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-58330-9_4

Download citation

Publish with us

Policies and ethics