Skip to main content

The Matrisome of Model Organisms: From In-Silico Prediction to Big-Data Annotation

  • Chapter
  • First Online:
Extracellular Matrix Omics

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 7))

Abstract

The extracellular matrix (ECM) is the architect of multicellular organisms. The use of various model organisms has helped decipher the mechanisms by which the ECM provides both chemical and mechanical cues that regulate fundamental cellular processes conserved during evolution such as cell migration, invasion, and differentiation.

High-throughput, or –omic, technologies has transfigured biomedical research. It is thus imperative to have a systematic way to identify ECM genes and proteins in large datasets. This requires having a comprehensive catalog of all the components that constitute the ECM. Here, we will describe the key structural features of ECM proteins (signal peptide, presence of protein domains, motifs, or repeats) that can be used to devise computational approaches to predict ECM proteins. We will then present fully automated machine-learning-based algorithms and approaches that have combined protein-sequence analysis and knowledge-based curation to define the matrisome of model organisms. Last, we provide examples of how the definition of the matrisome has facilitated the identification of ECM genes and proteins in –omic datasets and has advanced our understanding of the contribution of the ECM pathophysiological processes such as embryonic development, tissue regeneration, aging, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams JC (2018) Matricellular proteins: functional insights from non-mammalian animal models. Curr Top Dev Biol 130:39–105

    CAS  PubMed  Google Scholar 

  • Adams JC, Engel J (2007) Bioinformatic analysis of adhesion proteins. Methods Mol Biol 370:147–172

    CAS  PubMed  Google Scholar 

  • Agapite J, Albou L-P, Aleksander S, Argasinska J, Arnaboldi V, Attrill H, Bello SM, Blake JA, Blodgett O, Bradford YM et al (2020) Alliance of Genome Resources Portal: unified model organism research platform. Nucleic Acids Res 48:D650–D658

    Google Scholar 

  • Aho AV (1990) CHAPTER 5 - Algorithms for finding patterns in strings. In: Van leeuwen J (ed) Algorithms and complexity. Elsevier, Amsterdam, pp 255–300

    Google Scholar 

  • Ainsworth SJ, Stanley RL, Evans DJR (2010) Developmental stages of the Japanese quail. J Anat 216:3–15

    PubMed  Google Scholar 

  • Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33:3387–3395

    PubMed  Google Scholar 

  • Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computational biology. Mol Syst Biol 12:878

    PubMed  PubMed Central  Google Scholar 

  • Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423

    Google Scholar 

  • Arteel GE, Naba A (2020) The liver matrisome, looking beyond collagens. JHEP Rep 2(4):100115 S2589-5559(20):30049–30045

    Google Scholar 

  • Bingham, G.C., Lee, F., Naba, A., and Barker, T.H. (2020). Spatial-omics: novel approaches to probe cell heterogeneity and ECM biology. Matrix Biol. pii: S0945-053X(20)30049-4

    Google Scholar 

  • Birch HL (2018) Extracellular matrix and ageing. Subcell Biochem 90:169–190

    CAS  PubMed  Google Scholar 

  • Blobel G, Sabatini D (1971) Dissociation of mammalian polyribosomes into subunits by puromycin. Proc Natl Acad Sci U S A 68:390–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown NH (2011) Extracellular matrix in development: insights from mechanisms conserved between invertebrates and vertebrates. Cold Spring Harb Perspect Biol:3

    Google Scholar 

  • Budovskaya YV, Wu K, Southworth LK, Jiang M, Tedesco P, Johnson TE, Kim SK (2008) An elt-3/elt-5/elt-6 GATA transcription circuit guides aging in C. elegans. Cell 134:291–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Costanzo LD, Christie C, Duarte JM, Dutta S, Feng Z et al (2019) Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 47:D520–D528

    Google Scholar 

  • Chen J, Guo M, Wang X, Liu B (2018) A comprehensive review and comparison of different computational methods for protein remote homology detection. Brief Bioinform 19:231–244

    CAS  PubMed  Google Scholar 

  • Cheng L, Baonza A, Grifoni D (2018) Drosophila models of human disease. Biomed Res Int:2018

    Google Scholar 

  • Clerc O, Deniaud M, Vallet SD, Naba A, Rivet A, Perez S, Thierry-Mieg N, Ricard-Blum S (2019) MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res 47:D376–D381

    CAS  PubMed  Google Scholar 

  • Cote LE, Simental E, Reddien PW (2019) Muscle functions as a connective tissue and source of extracellular matrix in planarians. Nat Commun 10:1592

    PubMed  PubMed Central  Google Scholar 

  • Davis MN, Horne-Badovinac S, Naba A (2019) In-silico definition of the Drosophila melanogaster matrisome. Matrix Biol Plus 100015

    Google Scholar 

  • Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I (2017) CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 45:D289–D295

    CAS  PubMed  Google Scholar 

  • Diaz-de-la-Loza M-C, Ray RP, Ganguly PS, Alt S, Davis JR, Hoppe A, Tapon N, Salbreux G, Thompson BJ (2018) Apical and basal matrix remodeling control epithelial morphogenesis. Dev Cell 46:23–39.e5

    Google Scholar 

  • Dimou E, Nickel W (2018) Unconventional mechanisms of eukaryotic protein secretion. Curr Biol 28:R406–R410

    CAS  PubMed  Google Scholar 

  • Dolin CE, Arteel GE (2020) The matrisome, inflammation, and liver disease. Semin Liver Dis. 40(2):180–188

    PubMed  PubMed Central  Google Scholar 

  • Draper GW, Shoemark DK, Adams JC (2019) Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. Essays Biochem. 63:389–405

    CAS  PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    CAS  PubMed  Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    CAS  PubMed  Google Scholar 

  • Elliott SA, Alvarado AS (2018) Planarians and the history of animal regeneration: paradigm shifts and key concepts in biology. Methods Mol Biol 1774:207–239

    CAS  PubMed  Google Scholar 

  • Ewald CY (2019) The matrisome during aging and longevity: a systems-level approach toward defining matreotypes promoting healthy aging. GER:1–9

    Google Scholar 

  • Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW (2018) Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360

    Google Scholar 

  • Franzese M, Iuliano A (2019) Hidden Markov models. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C (eds) Encyclopedia of bioinformatics and computational biology. Academic Press, Oxford, pp 753–762

    Google Scholar 

  • Frézal L, Félix M-A (2015) C. elegans outside the Petri dish. ELife 4:e05849

    PubMed Central  Google Scholar 

  • Gebauer JM, Kobbe B, Paulsson M, Wagener R (2016) Structure, evolution and expression of collagen XXVIII: lessons from the zebrafish. Matrix Biol. 49:106–119

    CAS  PubMed  Google Scholar 

  • Gentile L, Cebrià F, Bartscherer K (2011) The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Dis Model Mech 4:12–19

    CAS  PubMed  Google Scholar 

  • Guan L, Zhang S, Xu H (2017) BAMORF: a novel computational method for predicting the extracellular matrix proteins. IEEE Access 5:18498–18505

    Google Scholar 

  • Harris TW, Arnaboldi V, Cain S, Chan J, Chen WJ, Cho J, Davis P, Gao S, Grove CA, Kishore R et al (2020) WormBase: a modern model organism information resource. Nucleic Acids Res 48:D762–D767

    CAS  PubMed  Google Scholar 

  • Herrera J, Henke CA, Bitterman PB (2018) Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 128:45–53

    PubMed  PubMed Central  Google Scholar 

  • Hohenester E, Engel J (2002) Domain structure and organisation in extracellular matrix proteins. Matrix Biol 21:115–128

    CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJA (2008) The 20 years of PROSITE. Nucleic Acids Res 36:D245–D249

    CAS  PubMed  Google Scholar 

  • Husi H (2019) Computational biology. Codon Publications

    Google Scholar 

  • Huss DJ, Saias S, Hamamah S, Singh JM, Wang J, Dave M, Kim J, Eberwine J, Lansford R (2019) Avian primordial germ cells contribute to and interact with the extracellular matrix during early migration. Front Cell Dev Biol 7:35

    PubMed  PubMed Central  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RO (2012) The evolution of metazoan extracellular matrix. J Cell Biol 196:671–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RO, Naba A (2012) Overview of the matrisome - an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4:a004903

    PubMed  PubMed Central  Google Scholar 

  • Izzi V, Lakkala J, Devarajan R, Kääriäinen A, Koivunen J, Heljasvaara R, Pihlajaniemi T (2019) Pan-cancer analysis of the expression and regulation of matrisome genes across 32 tumor types. Matrix Biol Plus 1:100004

    Google Scholar 

  • Jennings BH (2011) Drosophila – a versatile model in biology & medicine. Mater Today 14:190–195

    Google Scholar 

  • Jessen JR (2015) Recent advances in the study of zebrafish extracellular matrix proteins. Dev Biol 401:110–121

    CAS  PubMed  Google Scholar 

  • Jose A, Rejimoan R, Sivakumar Kc, Mundayoor S (2012) Prediction of extracellular matrix proteins using SVMhmm classifier. IJCA ACCTHPCA (Spl Iss) (1):7–11. https://www.ijcaonline.org/specialissues/accthpca/number1/7548-1002

  • Jung J, Ryu T, Hwang Y, Lee E, Lee D (2010) Prediction of extracellular matrix proteins based on distinctive sequence and domain characteristics. J Comput Biol 17:97–105

    CAS  PubMed  Google Scholar 

  • Kabir M, Ahmad S, Iqbal M, Khan Swati ZN, Liu Z, Yu D-J (2018) Improving prediction of extracellular matrix proteins using evolutionary information via a grey system model and asymmetric under-sampling technique. Chemometr Intell Lab Syst 174:22–32

    CAS  Google Scholar 

  • Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–399

    CAS  PubMed  Google Scholar 

  • Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    PubMed  Google Scholar 

  • Käll L, Krogh A, Sonnhammer ELL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(Suppl 1):i251–i257

    PubMed  Google Scholar 

  • Kandaswamy KK, Pugalenthi G, Kalies K-U, Hartmann E, Martinetz T (2013) EcmPred: prediction of extracellular matrix proteins based on random forest with maximum relevance minimum redundancy feature selection. J Theor Biol 317:377–383

    CAS  PubMed  Google Scholar 

  • Keeley FW, Mecham R (2013) Evolution of extracellular matrix. Springer, Berlin

    Google Scholar 

  • Keenan RJ, Freymann DM, Walter P, Stroud RM (1998) Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94:181–191

    CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496

    CAS  PubMed  Google Scholar 

  • Liu B, Leng L, Sun X, Wang Y, Ma J, Zhu Y (2020) ECMPride: prediction of human extracellular matrix proteins based on the ideal dataset using hybrid features with domain evidence. PeerJ 8:e9066

    PubMed  PubMed Central  Google Scholar 

  • Loganathan R, Rongish BJ, Smith CM, Filla MB, Czirok A, Bénazéraf B, Little CD (2016) Extracellular matrix motion and early morphogenesis. Development 143:2056–2065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markow TA (2015) The secret lives of Drosophila flies. ELife 4:e06793

    PubMed Central  Google Scholar 

  • Martin GR, Kleinman HK, Terranova VP, Ledbetter S, Hassell JR (1984) The regulation of basement membrane formation and cell-matrix interactions by defined supramolecular complexes. Ciba Found Symp 108:197–212

    CAS  PubMed  Google Scholar 

  • Martoglio B, Dobberstein B (1998) Signal sequences: more than just greasy peptides. Trends Cell Biol 8:410–415

    CAS  PubMed  Google Scholar 

  • Massey VL, Dolin CE, Poole LG, Hudson SV, Siow DL, Brock GN, Merchant ML, Wilkey DW, Arteel GE (2017) The hepatic “matrisome” responds dynamically to injury: characterization of transitional changes to the extracellular matrix in mice. Hepatology 65:969–982

    CAS  PubMed  Google Scholar 

  • Meneely PM, Dahlberg CL, Rose JK (2019) Working with worms: Caenorhabditis elegans as a model organism. Curr Protoc Essent Lab Tech 19:e35

    Google Scholar 

  • Meyers JR (2018) Zebrafish: development of a vertebrate model organism. Curr Protoc Essent Lab Tech 16:e19

    Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360

    CAS  PubMed  Google Scholar 

  • Naba A, Hoersch S, Hynes RO (2012a) Towards definition of an ECM parts list: an advance on GO categories. Matrix Biol 31:371–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO (2012b) The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 11:M111.014647

    PubMed  Google Scholar 

  • Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO (2016) The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24

    CAS  PubMed  Google Scholar 

  • Nauroy P, Hughes S, Naba A, Ruggiero F (2018) The in-silico zebrafish matrisome: a new tool to study extracellular matrix gene and protein functions. Matrix Biol 65:5–13

    CAS  PubMed  Google Scholar 

  • Neve A, Cantatore FP, Maruotti N, Corrado A, Ribatti D (2014) Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int 2014:756078

    PubMed  PubMed Central  Google Scholar 

  • Nielsen H, Tsirigos KD, Brunak S, von Heijne G (2019a) A brief history of protein sorting prediction. Protein J. 38:200–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen H, Petsalaki EI, Zhao L, Stühler K (2019b) Predicting eukaryotic protein secretion without signals. Biochim Biophys Acta Proteins Proteomics 1867:140174

    CAS  PubMed  Google Scholar 

  • Nilsson I, Lara P, Hessa T, Johnson AE, von Heijne G, Karamyshev AL (2015) The code for directing proteins for translocation across ER membrane: SRP cotranslationally recognizes specific features of a signal sequence. J Mol Biol 427:1191–1201

    CAS  PubMed  Google Scholar 

  • Özbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC (2010) The evolution of extracellular matrix. Mol Biol Cell 21:4300–4305

    PubMed  PubMed Central  Google Scholar 

  • Pagán OR (2017) Planaria: an animal model that integrates development, regeneration and pharmacology. Int J Dev Biol 61:519–529

    PubMed  Google Scholar 

  • Parichy DM (2015) Advancing biology through a deeper understanding of zebrafish ecology and evolution. ELife 4:e05635

    PubMed Central  Google Scholar 

  • Pearce OMT, Delaine-Smith RM, Maniati E, Nichols S, Wang J, Böhm S, Rajeeve V, Ullah D, Chakravarty P, Jones RR et al (2018) Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov 8:304–319

    CAS  PubMed  Google Scholar 

  • Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Lewis W, Page-McCaw A (2019) Basement membrane mechanics shape development: lessons from the fly. Matrix Biol 75–76:72–81

    PubMed  Google Scholar 

  • Reddien PW (2018) The cellular and molecular basis for planarian regeneration. Cell 175:327–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds SM, Käll L, Riffle ME, Bilmes JA, Noble WS (2008) Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLOS Comput Biol 4:e1000213

    PubMed  PubMed Central  Google Scholar 

  • Ribatti D (2019) Nicole Le Douarin and the use of quail-chick chimeras to study the developmental fate of neural crest and hematopoietic cells. Mech Dev 158:103557

    CAS  PubMed  Google Scholar 

  • Ricard-Blum S, Miele AE (2020) Omic approaches to decipher the molecular mechanisms of fibrosis, and design new anti-fibrotic strategies. Semin Cell Dev Biol 101:161–169

    CAS  PubMed  Google Scholar 

  • Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140

    CAS  PubMed  Google Scholar 

  • Ruzicka L, Howe DG, Ramachandran S, Toro S, Van Slyke CE, Bradford YM, Eagle A, Fashena D, Frazer K, Kalita P et al (2019) The Zebrafish Information Network: new support for non-coding genes, richer gene ontology annotations and the alliance of genome resources. Nucleic Acids Res 47:D867–D873

    CAS  PubMed  Google Scholar 

  • Sánchez Alvarado A (2015) Unravelling a can of worms. ELife 4:e07431

    PubMed Central  Google Scholar 

  • Savojardo C, Martelli PL, Fariselli P, Casadio R (2018) DeepSig: deep learning improves signal peptide detection in proteins. Bioinformatics 34:1690–1696

    CAS  PubMed  Google Scholar 

  • Shao X, Taha IN, Clauser KR, Gao, Y. (Tom), and Naba, A. (2020) MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res. 48:D1136–D1144

    Google Scholar 

  • Shoemark DK, Ziegler B, Watanabe H, Strompen J, Tucker RP, Özbek S, Adams JC (2019) Emergence of a thrombospondin superfamily at the origin of metazoans. Mol Biol Evol 36:1220–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Socovich AM, Naba A (2019) The cancer matrisome: from comprehensive characterization to biomarker discovery. Semin Cell Dev Biol 89:157–166

    CAS  PubMed  Google Scholar 

  • Spence SG, Poole TJ (1994) Developing blood vessels and associated extracellular matrix as substrates for neural crest migration in Japanese quail, Coturnix coturnix japonica. Int J Dev Biol 38:85–98

    CAS  PubMed  Google Scholar 

  • Springer TA (2006) Complement and the multifaceted functions of VWA and integrin I domains. Structure 14:1611–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taha IN, Naba A (2019) Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem:EBC20190001

    Google Scholar 

  • Teuscher AC, Jongsma E, Davis MN, Statzer C, Gebauer JM, Naba A, Ewald CY (2019) The in-silico characterization of the Caenorhabditis elegans matrisome and proposal of a novel collagen classification. Matrix Biol Plus 1:100001

    Google Scholar 

  • The Gene Ontology Consortium (2019) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 47:D330–D338

    Google Scholar 

  • The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Google Scholar 

  • Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ, Matthews BB, Millburn G, Antonazzo G, Trovisco V et al (2019) FlyBase 2.0: the next generation. Nucleic Acids Res 47:D759–D765

    CAS  PubMed  Google Scholar 

  • Tian C, Öhlund D, Rickelt S, Lidström T, Huang Y, Hao L, Zhao RT, Franklin O, Bhatia SN, Tuveson DA et al (2020) Cancer-cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Res. 80:1461–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43:W401–W407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viklund H, Bernsel A, Skwark M, Elofsson A (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24:2928–2929

    CAS  Google Scholar 

  • Viotti C (2016) ER to Golgi-dependent protein secretion: the conventional pathway. In: Pompa A, De Marchis F (eds) Unconventional protein secretion: methods and protocols. Springer, New York, NY, pp 3–29

    Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13:3369–3387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker CA, Bergeron K-F, Whittle J, Brandhorst BP, Burke RD, Hynes RO (2006) The echinoderm adhesome. Dev Biol 300:252–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witchley JN, Mayer M, Wagner DE, Owen JH, Reddien PW (2013) Muscle cells provide instructions for planarian regeneration. Cell Rep 4:633–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J-M, Liu Y-C, Chang DT-H (2019) SigUNet: signal peptide recognition based on semantic segmentation. BMC Bioinformatics 20:677

    PubMed  PubMed Central  Google Scholar 

  • Yang R, Zhang C, Gao R, Zhang L (2015) An ensemble method with hybrid features to identify extracellular matrix proteins. PLoS ONE 10:e0117804

    PubMed  PubMed Central  Google Scholar 

  • Yu G, Ibarra GH, Kaminski N (2018) Fibrosis: lessons from OMICS analyses of the human lung. Matrix Biol. 68–69:422–434

    PubMed  PubMed Central  Google Scholar 

  • Yuzhalin AE, Urbonas T, Silva MA, Muschel RJ, Gordon-Weeks AN (2018) A core matrisome gene signature predicts cancer outcome. Br J Cancer 118:435–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamir EA, Rongish BJ, Little CD (2008) The ECM moves during primitive streak formation—computation of ECM versus cellular motion. PLOS Biol 6:e247

    PubMed  Google Scholar 

  • Zhang J, Sun P, Zhao X, Ma Z (2014) PECM: Prediction of extracellular matrix proteins using the concept of Chou’s pseudo amino acid composition. J Theor Biol 363:412–418

    CAS  PubMed  Google Scholar 

  • Zhao L, Poschmann G, Waldera-Lupa D, Rafiee N, Kollmann M, Stühler K (2019) OutCyte: a novel tool for predicting unconventional protein secretion. Sci Rep 9:1–9

    Google Scholar 

  • Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding B-S, Engler AJ et al (2018) Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 73:77–104

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Martin Davis from the Naba lab for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Naba .

Editor information

Editors and Affiliations

Ethics declarations

This work was supported by a start-up fund from the Department of Physiology and Biophysics to AN and through project B11 of the SFB829 by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 73111208.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gebauer, J.M., Naba, A. (2020). The Matrisome of Model Organisms: From In-Silico Prediction to Big-Data Annotation. In: Ricard-Blum, S. (eds) Extracellular Matrix Omics. Biology of Extracellular Matrix, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-58330-9_2

Download citation

Publish with us

Policies and ethics