Skip to main content

Conformal Rule-Based Multi-label Classification

  • Conference paper
  • First Online:
KI 2020: Advances in Artificial Intelligence (KI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12325))

Included in the following conference series:

  • 1198 Accesses

Abstract

We advocate the use of conformal prediction (CP) to enhance rule-based multi-label classification (MLC). In particular, we highlight the mutual benefit of CP and rule learning: Rules have the ability to provide natural (non-)conformity scores, which are required by CP, while CP suggests a way to calibrate the assessment of candidate rules, thereby supporting better predictions and more elaborate decision making. We illustrate the potential usefulness of calibrated conformity scores in a case study on lazy multi-label rule learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    is the indicator function, i.e., if the predicate A is true and \(=0\) otherwise.

  2. 2.

    50 random splits into 400 training examples and 196 test examples.

  3. 3.

    Note that the accuracy-rejection curve for random abstention is flat.

References

  1. Aha, D. (ed.): Lazy Learning. Kluwer Academic Publ., Dordrecht (1997)

    MATH  Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  MATH  Google Scholar 

  3. Balasubramanian, V., Ho, S., Vovk, V. (eds.): Conformal Prediction for Reliable Machine Learning: Theory, Adaptations and Applications. Morgan Kaufmann, Waltham (2014)

    MATH  Google Scholar 

  4. Dembczynski, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach. Learn. 88(1–2), 5–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Friedman, J., Kohavi, R., Yun, Y.: Lazy decision trees. In: Proceedings AAAI 1996. pp. 717–724. Morgan Kaufmann, Menlo Park, California (1996)

    Google Scholar 

  6. Gammerman, A., Vovk, V., Boström, H., Carlsson, L.: Conformal and probabilistic prediction with applications: editorial. Mach. Learn. 108(3), 379–380 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mencía, E.L., Fürnkranz, J., Hüllermeier, E., Rapp, M.: Learning interpretable rules for multi-label classification. In: Escalante, H.J., et al. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 81–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_4

    Chapter  Google Scholar 

  8. Nguyen, V.L., Hüllermeier, E.: Reliable multi-label classification: Prediction with partial abstention. In: Proceedings of the AAAI 2020, Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, USA(2020)

    Google Scholar 

  9. Papadopoulos, H.: Inductive conformal prediction: theory and application to neural networks. Tools Artif. Intel. 18(2), 315–330 (2008)

    Google Scholar 

  10. Papadopoulos, H., Vovk, V., Gammerman, A.: Regression conformal prediction with nearest neighbours. J. Artif. Intell. Res. 40, 815–840 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res. 9, 371–421 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, Boston (2003)

    MATH  Google Scholar 

  14. Wieczorkowska, A., Synak, P., Ras, Z.: Multi-label classification of emotions in music. In: Klopotek, M., Wierzchon, S., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33521-8_30

    Chapter  Google Scholar 

  15. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) under grant number 400845550.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyke Hüllermeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hüllermeier, E., Fürnkranz, J., Loza Mencia, E. (2020). Conformal Rule-Based Multi-label Classification. In: Schmid, U., Klügl, F., Wolter, D. (eds) KI 2020: Advances in Artificial Intelligence. KI 2020. Lecture Notes in Computer Science(), vol 12325. Springer, Cham. https://doi.org/10.1007/978-3-030-58285-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58285-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58284-5

  • Online ISBN: 978-3-030-58285-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics