Skip to main content

Swarm-Based Cluster Analysis for Knowledge Discovery

  • Conference paper
  • First Online:
KI 2020: Advances in Artificial Intelligence (KI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12325))

Included in the following conference series:

  • 1188 Accesses

Abstract

The Databionic swarm (DBS) is a flexible and robust clustering framework that consists of three independent modules: swarm-based projection, high-dimensional data visualization, and representation guided clustering. The first module is the parameter-free projection method Pswarm, which exploits concepts of self-organization and emergence, game theory, and swarm intelligence. The second module is a parameter-free high-dimensional data visualization technique called topographic map. It uses the generalized U-matrix, which enables to estimate first, if any cluster tendency exists and second, the estimation of the number of clusters. The third module offers a clustering method that can be verified by the visualization and vice versa. Benchmarking w.r.t. conventional algorithms demonstrated that DBS can outperform them. Several applications showed that cluster structures provided by DBS are meaningful. This article is an abstract of Swarm Intelligence for Self-Organized Clustering [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thrun, M.C., Ultsch, A.: Swarm intelligence for self-organized clustering. Artif. Intell. (2020). https://doi.org/10.1016/j.artint.2020.103237

  2. Fayyad, U.M., et al.: Advances in Knowledge Discovery and Data Mining, vol. 21. American Association for Artificial Intelligence Press, Menlo Park, p. 611 (1996)

    Google Scholar 

  3. Bonner, R.E.: On some clustering technique. IBM J. Res. Dev. 8(1), 22–32 (1964)

    Article  MATH  Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Ney York (2001)

    MATH  Google Scholar 

  5. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn., vol. 961. Elsevier, Canada (2009)

    Google Scholar 

  6. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis, 4th edn. Arnold, London (2001)

    MATH  Google Scholar 

  7. Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)

    Article  Google Scholar 

  8. Ultsch, A., Lötsch, J.: Machine-learned cluster identification in high-dimensional data. J. Biomed. Inform. 66(C), 95–104 (2017)

    Article  Google Scholar 

  9. Charrad, M., et al.: NbClust package: finding the relevant number of clusters in a dataset. J. Stat. Softw. 61(6), 1–36 (2012)

    Google Scholar 

  10. Adolfsson, A., Ackerman, M., Brownstein, N.C.: To cluster, or not to cluster: an analysis of clusterability methods. Pattern Recogn. 88, 13–26 (2019)

    Article  Google Scholar 

  11. Thrun, M.C.: Improving the sensitivity of statistical testing for clusterability with mirrored-density plot. In: Archambault, D., Nabney, I., Peltonen, J. (eds.) Machine Learning Methods in Visualisation for Big Data. The Eurographics Association, Norrköping (2020). https://doi.org/10.2312/mlvis.20201102

  12. Goldstein, J.: Emergence as a construct: history and issues. Emergence 1(1), 49–72 (1999)

    Article  Google Scholar 

  13. Ultsch, A.: Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 33–46. Elsevier (1999)

    Google Scholar 

  14. Nash, J.F.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nash, J.F.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. USA 36(1), 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  16. Thrun, M.C., Ultsch, A.: Clustering benchmark datasets exploiting the fundamental clustering problems. Data Brief 30(C), 105501 (2020)

    Article  Google Scholar 

  17. Ultsch, A.: Clustering with DataBots. In: International Conference on Advances in Intelligent Systems Theory and Applications (AISTA), pp. 99–104. IEEE ACT Section, Canberra (2000)

    Google Scholar 

  18. Hennig, C., et al.: Handbook of cluster analysis. In: Hennig, C., et al. (eds.) Handbook of Modern Statistical Methods, vol. 730. Chapman & Hall/CRC Press, New York (2015)

    Google Scholar 

  19. Mirkin, B.G.: Clustering: a data recovery approach. In: Lafferty, J., et al. (eds.) Computer Science and Data Analysis Series. Chapman & Hall/CRC, Boca Raton (2005)

    Google Scholar 

  20. Ritter, G.: Robust cluster analysis and variable selection. In: Monographs on Statistics and Applied Probability. Chapman & Hall/CRC Press, Passau (2014)

    Google Scholar 

  21. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1), 60–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thrun, M.C.: Projection Based Clustering through Self-Organization and Swarm Intelligence. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-658-20540-9

    Book  Google Scholar 

  23. Ultsch, A., Thrun, M.C.: Credible visualizations for planar projections. In: Cottrell, M. (ed.) 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM), pp. 1–5. IEEE, Nany (2017)

    Google Scholar 

  24. Thrun, M.C., et al.: Visualization and 3D printing of multivariate data of biomarkers. In: Skala, V. (ed.) International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Plzen, pp. 7–16 (2016)

    Google Scholar 

  25. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lötsch, J., Ultsch, A.: Exploiting the structures of the U-matrix. In: Villmann, T., Schleif, F.-M., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and Learning Vector Quantization. AISC, vol. 295, pp. 249–257. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07695-9_24

    Chapter  Google Scholar 

  27. Murtagh, F.: On ultrametricity, data coding, and computation. J. Classif. 21(2), 167–184 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. Mach. Learn. 82(1), 1–42 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael C. Thrun or Alfred Ultsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thrun, M.C., Ultsch, A. (2020). Swarm-Based Cluster Analysis for Knowledge Discovery. In: Schmid, U., Klügl, F., Wolter, D. (eds) KI 2020: Advances in Artificial Intelligence. KI 2020. Lecture Notes in Computer Science(), vol 12325. Springer, Cham. https://doi.org/10.1007/978-3-030-58285-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58285-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58284-5

  • Online ISBN: 978-3-030-58285-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics