Skip to main content

Bicycle Station and Lane Location Selection Using Open Source GIS Technology

  • Chapter
  • First Online:
Open Source Geospatial Science for Urban Studies

Abstract

To create more sustainable and livable cities, researchers work on different topics. In this context, bicycles have an important positive effect on people living in urban areas since they provide not only relief of traffic congestion but also enhance citizens’ health. The finding suitable locations of bicycle sharing system stations and bicycle lanes are attracted attention because they have a huge contribution to providing bicycles are part of everyday life. The aim of this study is to propose a workflow that combines GIS and MCDM methods to determine locations of bicycle sharing system stations and bicycle lanes together. MCDM methods are used to identify which criterion more effective than others since different factors affect the location selection process. Weights of criteria are obtained using AHP, FAHP, and BWM while TOPSIS is applied to rank alternative locations. To provide a more useful and sharable solution, site selection model is prepared in QGIS which is a widely used open source GIS software. First, three different suitability index are obtained using weights that came from MCDM methods. After, average analysis is applied to these suitability indexes so as to increase the reliability of the result. Furthermore, three different scenario applications that take into consideration whether study area has bicycle sharing system station and bike lane currently are implemented in this study. Various alternative locations for bicycle sharing system station and bike lane are proposed in order to support urban planning studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/gulerdo/spatial-fuzzification.

References

  1. Chen, Y., Bouferguene, A., Li, H.X., et al.: Spatial gaps in urban public transport supply and demand from the perspective of sustainability. J. Clean. Prod. 195, 1237–1248 (2018). https://doi.org/10.1016/J.JCLEPRO.2018.06.021

    Article  Google Scholar 

  2. Jain, D., Tiwari, G.: How the present would have looked like? Impact of non-motorized transport and public transport infrastructure on travel behavior, energy consumption and CO2 emissions—Delhi, Pune and Patna. Sustain. Cities Soc. 22, 1–10 (2016). https://doi.org/10.1016/J.SCS.2016.01.001

    Article  Google Scholar 

  3. Israel Schwarzlose, A.A., Mjelde, J.W., Dudensing, R.M., et al.: Willingness to pay for public transportation options for improving the quality of life of the rural elderly. Transp. Res. Part A Policy Pract. 61, 1–14 (2014). https://doi.org/10.1016/J.TRA.2013.12.009

    Article  Google Scholar 

  4. Pucher, J., Peng, Z., Mittal, N., et al.: Urban transport trends and policies in China and India: impacts of rapid economic growth. Transp. Rev. 27, 379–410 (2007). https://doi.org/10.1080/01441640601089988

    Article  Google Scholar 

  5. Guler, D., Yomralioglu, T.: GIS and fuzzy AHP based area selection for electric vehicle charging stations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 249–252 (2018). https://doi.org/10.5194/isprs-archives-XLII-4-249-2018

  6. Goldman, T., Gorham, R.: Sustainable urban transport: four innovative directions. Technol. Soc. 28, 261–273 (2006). https://doi.org/10.1016/J.TECHSOC.2005.10.007

    Article  Google Scholar 

  7. Jones, L.R., Cherry, C.R., Vu, T.A., Nguyen, Q.N.: The effect of incentives and technology on the adoption of electric motorcycles: a stated choice experiment in Vietnam. Transp. Res. Part A Policy Pract. 57, 1–11 (2013). https://doi.org/10.1016/J.TRA.2013.09.003

    Article  Google Scholar 

  8. Lin, J.J., Lin, C.T., Feng, C.M.: Locating rental stations and bikeways in a public bike system. Transp. Plann. Technol. 41, 402–420 (2018). https://doi.org/10.1080/03081060.2018.1453915

    Article  Google Scholar 

  9. Fishman, E.: Bikeshare: a review of recent literature. Transp. Rev. 36, 92–113 (2016). https://doi.org/10.1080/01441647.2015.1033036

    Article  Google Scholar 

  10. Si, H., Shi, J., Wu, G., et al.: Mapping the bike sharing research published from 2010 to 2018: a scientometric review. J. Clean. Prod. 213, 415–427 (2019). https://doi.org/10.1016/J.JCLEPRO.2018.12.157

    Article  Google Scholar 

  11. Lin, J.-R., Yang, T.-H.: Strategic design of public bicycle sharing systems with service level constraints. Transp. Res. Part E Logist. Transp. Rev. 47, 284–294 (2011). https://doi.org/10.1016/j.tre.2010.09.004

  12. Conrow, L., Murray, A.T., Fischer, H.A.: An optimization approach for equitable bicycle share station siting. J. Transp. Geogr. 69, 163–170 (2018). https://doi.org/10.1016/j.jtrangeo.2018.04.023

  13. Abolhassani, L., Afghari, A.P., Borzadaran, H.M.: Public preferences towards bicycle sharing system in developing countries: the case of Mashhad, Iran. Sustain. Cities Soc. 44, 763–773 (2019). https://doi.org/10.1016/J.SCS.2018.10.032

    Article  Google Scholar 

  14. Kondo, M.C., Morrison, C., Guerra, E., et al.: Where do bike lanes work best? A Bayesian spatial model of bicycle lanes and bicycle crashes. Saf. Sci. 103, 225–233 (2018). https://doi.org/10.1016/J.SSCI.2017.12.002

    Article  Google Scholar 

  15. Lee, S.E., Simons-Morton, B.G., Klauer, S.E., et al.: Naturalistic assessment of novice teenage crash experience. Accid. Anal. Prev. 43, 1472–1479 (2011). https://doi.org/10.1016/J.AAP.2011.02.026

    Article  Google Scholar 

  16. Faghih-Imani, A., Anowar, S., Miller, E.J., Eluru, N.: Hail a cab or ride a bike? A travel time comparison of taxi and bicycle-sharing systems in New York City. Transp. Res. Part A Policy Pract. 101, 11–21 (2017). https://doi.org/10.1016/J.TRA.2017.05.006

    Article  Google Scholar 

  17. Cai, S., Long, X., Li, L., et al.: Determinants of intention and behavior of low carbon commuting through bicycle-sharing in China. J. Clean. Prod. 212, 602–609 (2019). https://doi.org/10.1016/J.JCLEPRO.2018.12.072

    Article  Google Scholar 

  18. Jain, T., Wang, X., Rose, G., Johnson, M.: Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers. J. Transp. Geogr. 71, 45–57 (2018). https://doi.org/10.1016/J.JTRANGEO.2018.06.023

    Article  Google Scholar 

  19. Hyland, M., Hong, Z., de Farias Pinto, H.K.R., Chen, Y.: Hybrid cluster-regression approach to model bikeshare station usage. Transp. Res. Part A Policy Pract. 115, 71–89 (2018). https://doi.org/10.1016/J.TRA.2017.11.009

    Article  Google Scholar 

  20. Heinen, E., Kamruzzaman, M., Turrell, G.: The public bicycle-sharing scheme in Brisbane, Australia: evaluating the influence of its introduction on changes in time spent cycling amongst a middle- and older-age population. J. Transp. Health 10, 56–73 (2018). https://doi.org/10.1016/J.JTH.2018.07.003

    Article  Google Scholar 

  21. Van Cauwenberg, J., Clarys, P., De Bourdeaudhuij, I., et al.: Environmental influences on older adults’ transportation cycling experiences: a study using bike-along interviews. Landsc. Urban Plan. 169, 37–46 (2018). https://doi.org/10.1016/J.LANDURBPLAN.2017.08.003

    Article  Google Scholar 

  22. Wu, J., Wang, L., Li, W.: Usage patterns and impact factors of public bicycle systems: comparison between city center and suburban district in Shenzhen. J. Urban Plan. Dev. 144, 4018027 (2018). https://doi.org/10.1061/(ASCE)UP.1943-5444.0000471

    Article  Google Scholar 

  23. Sun, Y., Mobasheri, A., Hu, X., et al.: Investigating impacts of environmental factors on the cycling behavior of bicycle-sharing users. Sustainability 9, 1060 (2017). https://doi.org/10.3390/su9061060

    Article  Google Scholar 

  24. Yuan, M., Zhang, Q., Wang, B., et al.: A mixed integer linear programming model for optimal planning of bicycle sharing systems: a case study in Beijing. Sustain. Cities Soc. 47, 101515 (2019). https://doi.org/10.1016/J.SCS.2019.101515

    Article  Google Scholar 

  25. Cheng, Y.H., Lin, Y.C.: Expanding the effect of metro station service coverage by incorporating a public bicycle sharing system. Int. J. Sustain. Transp. 12, 241–252 (2018). https://doi.org/10.1080/15568318.2017.1347219

    Article  Google Scholar 

  26. Griffin, G.P., Jiao, J.: Crowdsourcing bike share station locations. J. Am. Plan. Assoc. 85, 35–48 (2019). https://doi.org/10.1080/01944363.2018.1476174

    Article  Google Scholar 

  27. Wang, L., Li, C., Chen, M.Z.Q., et al.: Connectivity-based accessibility for public bicycle sharing systems. IEEE Trans. Autom. Sci. Eng. 15, 1521–1532 (2018). https://doi.org/10.1109/TASE.2018.2868471

    Article  Google Scholar 

  28. Boettge, B., Hall, D., Crawford, T., et al.: Assessing the bicycle network in St. Louis: a place based user-centered approach. Sustainability 9, 241 (2017). https://doi.org/10.3390/su9020241

  29. Mooney, S.J., Hosford, K., Howe, B., et al.: Freedom from the station: spatial equity in access to dockless bike share. J. Transp. Geogr. 74, 91–96 (2019). https://doi.org/10.1016/J.JTRANGEO.2018.11.009

    Article  Google Scholar 

  30. Hosford, K., Winters, M.: Who are public bicycle share programs serving? An evaluation of the equity of spatial access to bicycle share service areas in Canadian cities. Transp. Res. Rec. J. Transp. Res. Board 2672, 42–50 (2018). https://doi.org/10.1177/0361198118783107

    Article  Google Scholar 

  31. Ferenchak, N.N., Marshall, W.E.: Suppressed child pedestrian and bicycle trips as an indicator of safety: adopting a proactive safety approach. Transp. Res. Part A Policy Pract. 124, 128–144 (2019). https://doi.org/10.1016/J.TRA.2019.03.010

    Article  Google Scholar 

  32. Saplıoğlu, M., Aydın, M.M.: Choosing safe and suitable bicycle routes to integrate cycling and public transport systems. J. Transp. Health (2018). https://doi.org/10.1016/j.jth.2018.05.011

  33. Kaygisiz, Ö., Hauger, G.: Network-based point pattern analysis of bicycle accidents to improve cyclist safety. Transp. Res. Rec. 2659, 106–116 (2017). https://doi.org/10.3141/2659-12

    Article  Google Scholar 

  34. Lin, J.J., Yu, C.J.: A bikeway network design model for urban areas. Transportation 40, 45–68 (2013). https://doi.org/10.1007/s11116-012-9409-6

    Article  Google Scholar 

  35. Kent, M., Karner, A.: Prioritizing low-stress and equitable bicycle networks using neighborhood-based accessibility measures. Int. J. Sustain. Transp. 13, 100–110 (2019). https://doi.org/10.1080/15568318.2018.1443177

    Article  Google Scholar 

  36. Veillette, M.P., Grisé, E., El-Geneidy, A.: Park ‘n’ roll: identifying and prioritizing locations for new bicycle parking in Québec City, Canada. Transp. Res. Rec. J. Transp. Res. Board 2672, 73–82 (2018). https://doi.org/10.1177/0361198118776522

    Article  Google Scholar 

  37. Larsen, J., Patterson, Z., El-Geneidy, A.: Build it. But where? The use of geographic information systems in identifying locations for new cycling infrastructure. Int. J. Sustain. Transp. 7, 299–317 (2013). https://doi.org/10.1080/15568318.2011.631098

    Article  Google Scholar 

  38. Rybarczyk, G., Wu, C.: Bicycle facility planning using GIS and multi-criteria decision analysis. Appl. Geogr. 30, 282–293 (2010). https://doi.org/10.1016/j.apgeog.2009.08.005

  39. García-Palomares, J.C., Gutiérrez, J., Latorre, M.: Optimizing the location of stations in bike-sharing programs: a GIS approach. Appl. Geogr. 35, 235–246 (2012). https://doi.org/10.1016/j.apgeog.2012.07.002

  40. Terh, S.H., Cao, K.: GIS-MCDA based cycling paths planning: a case study in Singapore. Appl. Geogr. 94, 107–118 (2018). https://doi.org/10.1016/j.apgeog.2018.03.007

  41. Kabak, M., Erbaş, M., Çetinkaya, C., Özceylan, E.: A GIS-based MCDM approach for the evaluation of bike-share stations. J. Clean. Prod. 201, 49–60 (2018). https://doi.org/10.1016/j.jclepro.2018.08.033

  42. Sun, Y., Mobasheri, A.: Utilizing crowdsourced data for studies of cycling and air pollution exposure: a case study using strava data. Int. J. Environ. Res. Public Health 14, 274 (2017). https://doi.org/10.3390/ijerph14030274

    Article  Google Scholar 

  43. Sun, Y., Moshfeghi, Y., Liu, Z.: Exploiting crowdsourced geographic information and GIS for assessment of air pollution exposure during active travel. J. Transp. Health 6, 93–104 (2017). https://doi.org/10.1016/j.jth.2017.06.004

    Article  Google Scholar 

  44. Sun, Y., Du, Y., Wang, Y., Zhuang, L.: Examining associations of environmental characteristics with recreational cycling behaviour by street-level strava data. Int. J. Environ. Res. Public Health 14, 644 (2017). https://doi.org/10.3390/ijerph14060644

    Article  Google Scholar 

  45. Conrow, L., Wentz, E., Nelson, T., Pettit, C.: Comparing spatial patterns of crowdsourced and conventional bicycling datasets. Appl. Geogr. 92, 21–30 (2018). https://doi.org/10.1016/j.apgeog.2018.01.009

    Article  Google Scholar 

  46. Norman, P., Pickering, C.M., Castley, G.: What can volunteered geographic information tell us about the different ways mountain bikers, runners and walkers use urban reserves? Landsc. Urban Plan. 185, 180–190 (2019). https://doi.org/10.1016/j.landurbplan.2019.02.015

    Article  Google Scholar 

  47. Orellana, D., Guerrero, M.L.: Exploring the influence of road network structure on the spatial behaviour of cyclists using crowdsourced data. Environ. Plan. B Urban Anal. City Sci. 46, 1314–1330 (2019). https://doi.org/10.1177/2399808319863810

    Article  Google Scholar 

  48. Giuffrida, L.P., Inturri, I.: Mapping with stakeholders: an overview of public participatory GIS and VGI in transport decision-making. ISPRS Int. J. Geo-Inf. 8, 198 (2019). https://doi.org/10.3390/ijgi8040198

    Article  Google Scholar 

  49. Güler, D., Yomralıoğlu, T.: Alternative suitable landfill site selection using analytic hierarchy process and geographic information systems: a case study in Istanbul. Environ. Earth Sci. 76 (2017). https://doi.org/10.1007/s12665-017-7039-1

  50. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  51. Kaufmann, A., Gupta, M.M.: Fuzzy Mathematical Models in Engineering and Management Science. Elsevier Science Inc. (1988)

    Google Scholar 

  52. Zimmermann, H.J.: Fuzzy Set Theory—And Its Applications. Springer, Dordrecht (2011)

    Google Scholar 

  53. Malczewski, J., Rinner, C.: Dealing with uncertainties. In: Malczewski, J., Rinner, C. (eds.) Multicriteria Decision Analysis in Geographic Information Science, pp. 191–221. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

    Google Scholar 

  54. Zeng, T.Q., Zhou, Q.: Optimal spatial decision making using GIS: a prototype of a real state geographical information system (REGIS). Int. J. Geogr. Inf. Sci. (2001). https://doi.org/10.1080/136588101300304034

    Article  Google Scholar 

  55. Lin, C.T., Lin, J.K.: Fuzzy-GIS approach for applying the AHP multi-criteria decision-making model to evaluate real estate purchases. J. Test. Eval. (2013). https://doi.org/10.1520/jte20120030

    Article  Google Scholar 

  56. Saaty, T.L., Vargas, L.G.: How to make a decision. In: Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, pp. 1–21. Springer US, Boston, MA (2012)

    Google Scholar 

  57. Şen, C.G., Çınar, G.: Evaluation and pre-allocation of operators with multiple skills: a combined fuzzy AHP and max–min approach. Expert Syst. Appl. 37, 2043–2053 (2010). https://doi.org/10.1016/J.ESWA.2009.06.075

    Article  Google Scholar 

  58. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega 53, 49–57 (2015). https://doi.org/10.1016/j.omega.2014.11.009

  59. Rezaei, J.: Best-worst multi-criteria decision-making method: some properties and a linear model. Omega 64, 126–130 (2016). https://doi.org/10.1016/j.omega.2015.12.001

  60. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications: A State-of-the-Art Survey. Springer-Verlag, New York (1981)

    MATH  Google Scholar 

  61. Neteler, M., Bowman, M.H., Landa, M., Metz, M.: GRASS GIS: a multi-purpose open source GIS. Environ. Model. Softw. 31, 124–130 (2012). https://doi.org/10.1016/J.ENVSOFT.2011.11.014

    Article  Google Scholar 

  62. Arias de Reyna, M., Simoes, J.: Empowering citizen science through free and open source GIS. Open Geospat. Data Softw. Stand. 1 (2016). https://doi.org/10.1186/s40965-016-0008-x

  63. Grizonnet, M., Michel, J., Poughon, V., et al.: Orfeo ToolBox: open source processing of remote sensing images. Open Geospat. Data Softw. Stand. 2, 15 (2017). https://doi.org/10.1186/s40965-017-0031-6

    Article  Google Scholar 

  64. Ledoux, H.: val3dity: validation of 3D GIS primitives according to the international standards. Open Geospat. Data Softw. Stand. 3 (2018). https://doi.org/10.1186/s40965-018-0043-x

  65. Steiniger, S., Hunter, A.J.S.: The 2012 free and open source GIS software map—a guide to facilitate research, development, and adoption. Comput. Environ. Urban Syst. 39, 136–150 (2013)

    Article  Google Scholar 

  66. Swain, N.R., Latu, K., Christensen, S.D., et al.: A review of open source software solutions for developing water resources web applications. Environ. Model. Softw. 67, 108–117 (2015)

    Article  Google Scholar 

  67. Dile, Y.T., Daggupati, P., George, C., et al.: Introducing a new open source GIS user interface for the SWAT model. Environ. Model. Softw. 85, 129–138 (2016). https://doi.org/10.1016/J.ENVSOFT.2016.08.004

    Article  Google Scholar 

  68. Petrasova, A., Petras, V., Harmon, B., Mitasova, H.: Tangible Modeling with Open Source GIS. Springer, Cham (2015)

    Book  Google Scholar 

  69. Steiniger, S., Bocher, E.: An overview on current free and open source desktop GIS developments. Int. J. Geogr. Inf. Sci. 23, 1345–1370 (2009). https://doi.org/10.1080/13658810802634956

    Article  Google Scholar 

  70. Milakis, D., Athanasopoulos, K.: What about people in cycle network planning? Applying participative multicriteria GIS analysis in the case of the Athens metropolitan cycle network. J. Transp. Geogr. 35, 120–129 (2014). https://doi.org/10.1016/j.jtrangeo.2014.01.009

  71. Mete, M.O., Guler, D., Yomralioglu, T.: Development of 3D web GIS application with open source library. Selcuk Univ. J. Eng. Sci. Technol. 6, 818–824 (2018). https://doi.org/10.15317/Scitech.2018.171

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dogus Guler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guler, D., Yomralioglu, T. (2021). Bicycle Station and Lane Location Selection Using Open Source GIS Technology. In: Mobasheri, A. (eds) Open Source Geospatial Science for Urban Studies. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-58232-6_2

Download citation

Publish with us

Policies and ethics