Skip to main content

Overview of Touché 2020: Argument Retrieval

Extended Abstract

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12260)

Abstract

This paper is a condensed report on Touché: the first shared task on argument retrieval that was held at CLEF 2020. With the goal to create a collaborative platform for research in argument retrieval, we run two tasks: (1) supporting individuals in finding arguments on socially important topics and (2) supporting individuals with arguments on everyday personal decisions.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CLEF 2020, 22–25 September 2020, Thessaloniki, Greece.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-58219-7_26
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-58219-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Notes

  1. 1.

    The name of the lab is inspired by the usage of the term “touché” as an exclamation “used to admit that someone has made a good point against you in an argument or discussion.” [https://dictionary.cambridge.org/dictionary/english/touche].

  2. 2.

    https://www.research.ibm.com/artificial-intelligence/project-debater/.

  3. 3.

    http://commoncrawl.org.

  4. 4.

    https://www.args.me/api-en.html.

  5. 5.

    https://webis.de/data/args-me-corpus.html.

  6. 6.

    https://pypi.org/project/trectools/.

  7. 7.

    https://lemurproject.org/clueweb12/.

  8. 8.

    https://www.chatnoir.eu/.

  9. 9.

    https://www.chatnoir.eu/doc/.

  10. 10.

    Also described on the lab website: https://touche.webis.de.

  11. 11.

    https://www.mywot.com/developers.

References

  1. Ajjour, Y., Wachsmuth, H., Kiesel, J., Potthast, M., Hagen, M., Stein, B.: Data acquisition for argument search: the args.me corpus. In: Benzmüller, C., Stuckenschmidt, H. (eds.) KI 2019. LNCS (LNAI), vol. 11793, pp. 48–59. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30179-8_4

    CrossRef  Google Scholar 

  2. Kennedy, G.A.: Aristotle On Rhetoric: A Theory of Civic Discourse. Oxford University Press, Oxford (2006)

    Google Scholar 

  3. Bar-Haim, R., et al.: From surrogacy to adoption; from bitcoin to cryptocurrency: debate topic expansion. In: Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, pp. 977–990. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1094

  4. Bevendorff, J., Stein, B., Hagen, M., Potthast, M.: Elastic ChatNoir: search engine for the ClueWeb and the common crawl. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 820–824. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_83

    CrossRef  Google Scholar 

  5. Bondarenko, A., et al.: Comparative web search questions. In: Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM 2020, pp. 52–60. ACM (2020). https://doi.org/10.1145/3336191.3371848

  6. Bondarenko, A., et al.: Overview of Touché 2020: conversational and comparative argument retrieval. In: Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings, CLEF and CEUR-WS.org (2020, to appear)

    Google Scholar 

  7. Bondarenko, A., et al.: Touché: first shared task on argument retrieval. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 517–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_67

    CrossRef  Google Scholar 

  8. Chernodub, A.N., et al.: TARGER: neural argument mining at your fingertips. In: Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, pp. 195–200. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-3031

  9. Dumani, L., Neumann, P.J., Schenkel, R.: A framework for argument retrieval. In: Jose, J., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 431–445. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_29

    CrossRef  Google Scholar 

  10. Gienapp, L., Stein, B., Hagen, M., Potthast, M.: Efficient pairwise annotation of argument quality. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, pp. 5772–5781. Association for Computational Linguistics (2020). https://www.aclweb.org/anthology/2020.acl-main.511/

  11. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002). http://doi.acm.org/10.1145/582415.582418

    CrossRef  Google Scholar 

  12. Jindal, N., Liu, B.: Identifying comparative sentences in text documents. In: Proceedings of the 29th Annual International Conference on Research and Development in Information Retrieval, SIGIR 2006, pp. 244–251. ACM (2006). https://doi.org/10.1145/1148170.1148215

  13. Jindal, N., Liu, B.: Mining comparative sentences and relations. In: Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI 2006, pp. 1331–1336. AAAI Press (2006). http://www.aaai.org/Library/AAAI/2006/aaai06-209.php

  14. Kessler, W., Kuhn, J.: A corpus of comparisons in product reviews. In: Proceedings of the 9th International Conference on Language Resources and Evaluation, LREC 2014, pp. 2242–2248. European Language Resources Association (ELRA) (2014). http://www.lrec-conf.org/proceedings/lrec2014/summaries/1001.html

  15. Levy, R., Bogin, B., Gretz, S., Aharonov, R., Slonim, N.: Towards an argumentative content search engine using weak supervision. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, COLING 2018, pp. 2066–2081. Association for Computational Linguistics (2018). https://www.aclweb.org/anthology/C18-1176/

  16. Ma, N., Mazumder, S., Wang, H., Liu, B.: Entity-aware dependency-based deep graph attention network for comparative preference classification. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, pp. 5782–5788. Association for Computational Linguistics (2020). https://www.aclweb.org/anthology/2020.acl-main.512/

  17. Mass, Y., et al.: Word emphasis prediction for expressive text to speech. In: Proceedings of the 19th Annual Conference of the International Speech Communication Association, Interspeech 2018, pp. 2868–2872. ISCA (2018). https://doi.org/10.21437/Interspeech.2018-1159

  18. Nadamoto, A., Tanaka, K.: A Comparative Web Browser (CWB) for browsing and comparing web pages. In: Proceedings of the 12th International World Wide Web Conference, WWW 2003, pp. 727–735. ACM (2003). https://doi.org/10.1145/775152.775254

  19. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web (1998)

    Google Scholar 

  20. Palotti, J.R.M., Scells, H., Zuccon, G.: TrecTools: an open-source Python library for information retrieval practitioners involved in TREC-like campaigns. In: Proceedings of the 42nd International Conference on Research and Development in Information Retrieval, SIGIR 2019, pp. 1325–1328. ACM (2019). https://doi.org/10.1145/3331184.3331399

  21. Panchenko, A., Bondarenko, A., Franzek, M., Hagen, M., Biemann, C.: Categorizing comparative sentences. In: Proceedings of the 6th Workshop on Argument Mining, ArgMining@ACL 2019, pp. 136–145. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/w19-4516

  22. Potthast, M., et al.: Argument search: assessing argument relevance. In: Proceedings of the 42nd International Conference on Research and Development in Information Retrieval, SIGIR 2019, pp. 1117–1120. ACM (2019). https://doi.org/10.1145/3331184.3331327

  23. Potthast, M., Gollub, T., Wiegmann, M., Stein, B.: TIRA integrated research architecture. Information Retrieval Evaluation in a Changing World. TIRS, vol. 41, pp. 123–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22948-1_5

    CrossRef  Google Scholar 

  24. Potthast, M., Hagen, M., Stein, B.: The dilemma of the direct answer. SIGIR Forum 54(1) (2020). http://sigir.org/forum/issues/june-2020/

  25. Schildwächter, M., Bondarenko, A., Zenker, J., Hagen, M., Biemann, C., Panchenko, A.: Answering comparative questions: better than ten-blue-links? In: Proceedings of the Conference on Human Information Interaction and Retrieval, CHIIR 2019, pp. 361–365. ACM (2019). https://doi.org/10.1145/3295750.3298916

  26. Stab, C., et al.: ArgumenText: searching for arguments in heterogeneous sources. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, NAACL-HLT 2018, pp. 21–25. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-5005

  27. Sun, J., Wang, X., Shen, D., Zeng, H., Chen, Z.: CWS: a comparative web search system. In: Proceedings of the 15th International Conference on World Wide Web, WWW 2006, pp. 467–476. ACM (2006). https://doi.org/10.1145/1135777.1135846

  28. Wachsmuth, H., et al.: Argumentation quality assessment: theory vs. practice. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, pp. 250–255. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/P17-2039

  29. Wachsmuth, H., et al.: Building an argument search engine for the web. In: Proceedings of the 4th Workshop on Argument Mining, ArgMining@EMNLP 2017, pp. 49–59. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/w17-5106

  30. Wachsmuth, H., Stein, B., Ajjour, Y.:“PageRank” for argument relevance. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, pp. 1117–1127. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/e17-1105

  31. Wachsmuth, H., Syed, S., Stein, B.: Retrieval of the best counterargument without prior topic knowledge. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, pp. 241–251. Association for Computational Linguistics (2018). https://www.aclweb.org/anthology/P18-1023/

Download references

Acknowledgments

This work was supported by the DFG through the project “ACQuA: Answering Comparative Questions with Arguments” (grants BI 1544/7-1 and HA 5851/2-1) as part of the priority program “RATIO: Robust Argumentation Machines” (SPP 1999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bondarenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bondarenko, A. et al. (2020). Overview of Touché 2020: Argument Retrieval. In: , et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2020. Lecture Notes in Computer Science(), vol 12260. Springer, Cham. https://doi.org/10.1007/978-3-030-58219-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58219-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58218-0

  • Online ISBN: 978-3-030-58219-7

  • eBook Packages: Computer ScienceComputer Science (R0)