Advertisement

Overview of LifeCLEF 2020: A System-Oriented Evaluation of Automated Species Identification and Species Distribution Prediction

  • Alexis JolyEmail author
  • Hervé Goëau
  • Stefan Kahl
  • Benjamin Deneu
  • Maximillien Servajean
  • Elijah Cole
  • Lukáš Picek
  • Rafael Ruiz de Castañeda
  • Isabelle Bolon
  • Andrew Durso
  • Titouan Lorieul
  • Christophe Botella
  • Hervé Glotin
  • Julien Champ
  • Ivan Eggel
  • Willem-Pier Vellinga
  • Pierre Bonnet
  • Henning Müller
Conference paper
  • 215 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12260)

Abstract

Building accurate knowledge of the identity, the geographic distribution and the evolution of species is essential for the sustainable development of humanity, as well as for biodiversity conservation. However, the difficulty of identifying plants and animals in the field is hindering the aggregation of new data and knowledge. Identifying and naming living plants or animals is almost impossible for the general public and is often difficult even for professionals and naturalists. Bridging this gap is a key step towards enabling effective biodiversity monitoring systems. The LifeCLEF campaign, presented in this paper, has been promoting and evaluating advances in this domain since 2011. The 2020 edition proposes four data-oriented challenges related to the identification and prediction of biodiversity: (i) PlantCLEF: cross-domain plant identification based on herbarium sheets (ii) BirdCLEF: bird species recognition in audio soundscapes, (iii) GeoLifeCLEF: location-based prediction of species based on environmental and occurrence data, and (iv) SnakeCLEF: snake identification based on image and geographic location.

Notes

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No\(^{\circ }\) 863463 (Cos4Cloud project), and the support of #DigitAG.

References

  1. 1.
    Bai, J., Chen, C., Chen, J.: Xception based system for bird sound detection. In: CLEF Working Notes 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  2. 2.
    Bloch, L., et al.: Combination of image and location information for snake species identification using object detection and efficientnets. In: CLEF Working Notes 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  3. 3.
    Bolon, I., et al.: Identifying the snake: first scoping review on practices of communities and healthcare providers confronted with snakebite across the world. PLoS One 15(3), e0229989 (2020)Google Scholar
  4. 4.
    Bonnet, P., et al.: Plant identification: experts vs. machines in the era of deep learning. In: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P. (eds.) Multimedia Tools and Applications for Environmental & Biodiversity Informatics. MSA, pp. 131–149. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76445-0_8CrossRefGoogle Scholar
  5. 5.
    Cai, J., Ee, D., Pham, B., Roe, P., Zhang, J.: Sensor network for the monitoring of ecosystem: bird species recognition. In: 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, ISSNIP 2007 (2007).  https://doi.org/10.1109/ISSNIP.2007.4496859
  6. 6.
    de Castañeda, R.R., et al.: Snakebite and snake identification: empowering neglected communities and health-care providers with AI. Lancet Digit. Health 1(5), e202–e203 (2019)CrossRefGoogle Scholar
  7. 7.
    Chulif, S., Chang, Y.L.: Cross-domain plant identification on French Guyana Flora: neuon submission to LifeCLEF 2020 plant. In: CLEF Working Notes 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  8. 8.
    Clementino, T., Colonna, J.G.: Using triplet loss to bird species recognition on BirdCLEF 2020. In: CLEF Working Notes 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  9. 9.
    Cole, E., et al.: The GeoLifeCLEF 2020 dataset. arXiv preprint arXiv:2004.04192 (2020)
  10. 10.
    Deneu, B., et al.: Overview of LifeCLEF location-based species prediction task 2020 (GeoLifeCLEF). In: CLEF task overview 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  11. 11.
    Deneu, B., Servajean, M., Joly, A.: Participation of LIRMM/Inria to the GeoLifeCLEF 2020 challenge. In: CLEF Working Notes 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  12. 12.
    Sprengel, E., Jaggi, M., Kilcher, Y., Hofmann, T.: Audio based bird species identification using deep learning techniques. In: CLEF Working Notes 2016, CLEF: Conference and Labs of the Evaluation Forum, Évora, Portugal, September 2016 (2016)Google Scholar
  13. 13.
    Evans, J.S., Murphy, M.A., Holden, Z.A., Cushman, S.A.: Modeling species distribution and change using random forest. In: Drew, C., Wiersma, Y., Huettmann, F. (eds.) Predictive Species and Habitat Modeling in Landscape Ecology, pp. 139–159. Springer, New York (2011).  https://doi.org/10.1007/978-1-4419-7390-0_8CrossRefGoogle Scholar
  14. 14.
    Gaston, K.J., O’Neill, M.A.: Automated species identification: why not? Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 359(1444), 655–667 (2004)CrossRefGoogle Scholar
  15. 15.
    Ghazi, M.M., Yanikoglu, B., Aptoula, E.: Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235, 228–235 (2017)CrossRefGoogle Scholar
  16. 16.
    Glotin, H., Clark, C., LeCun, Y., Dugan, P., Halkias, X., Sueur, J.: Proceedings of 1st Workshop on Machine Learning for Bioacoustics - ICML4B. ICML, Atlanta (2013). http://sabiod.org/ICML4B2013_book.pdf
  17. 17.
    Goëau, H., Bonnet, P., Joly, A.: Plant identification in an open-world (LifeCLEF 2016). In: CLEF Task Overview 2016, CLEF: Conference and Labs of the Evaluation Forum, September 2016, Évora, Portugal (2016)Google Scholar
  18. 18.
    Goëau, H., Bonnet, P., Joly, A.: Plant identification based on noisy web data: the amazing performance of deep learning (LifeCLEF 2017). In: CLEF Task Overview 2017, CLEF: Conference and Labs of the Evaluation Forum, Dublin, Ireland, September 2017 (2017)Google Scholar
  19. 19.
    Goëau, H., Bonnet, P., Joly, A.: Overview of ExpertLifeCLEF 2018: how far automated identification systems are from the best experts? In: CLEF Task Overview 2018, CLEF: Conference and Labs of the Evaluation Forum, Avignon, France, September 2018 (2018)Google Scholar
  20. 20.
    Goëau, H., Bonnet, P., Joly, A.: Overview of LifeCLEF plant identification task 2019: diving into data deficient tropical countries. In: CLEF Task Overview 2019, CLEF: Conference and Labs of the Evaluation Forum, Lugano, Switzerland, September 2019 (2019)Google Scholar
  21. 21.
    Goëau, H., Bonnet, P., Joly, A.: Overview of LifeCLEF plant identification task 2020. In: CLEF Task Overview 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  22. 22.
    Goëau, H., et al.: The ImageCLEF 2013 plant identification task. In: CLEF Task Overview 2013, CLEF: Conference and Labs of the Evaluation Forum, Valencia, Spain, September 2013 (2013)Google Scholar
  23. 23.
    Goëau, H., et al.: The ImageCLEF 2011 plant images classification task. In: CLEF Task Overview 2011, CLEF: Conference and Labs of the Evaluation Forum, Amsterdam, Netherlands, September 2011 (2011)Google Scholar
  24. 24.
    Goëau, H., et al.: ImageCLEF 2012 plant images identification task. In: CLEF Task Overview 2012, CLEF: Conference and Labs of the Evaluation Forum, Rome, Italy, September 2012 (2012)Google Scholar
  25. 25.
    Goëau, H., Glotin, H., Planqué, R., Vellinga, W.P., Stefan, Kahl, J.A.: Overview of BirdCLEF 2018: monophone vs. soundscape bird identification. In: CLEF Task Overview 2018, CLEF: Conference and Labs of the Evaluation Forum, Avignon, France, September 2018 (2018)Google Scholar
  26. 26.
    Goëau, H., Joly, A., Bonnet, P.: LifeCLEF plant identification task 2015. In: CLEF Task Overview 2015, CLEF: Conference and Labs of the Evaluation Forum, Toulouse, France, September 2015 (2015)Google Scholar
  27. 27.
    Goëau, H., et al.: The ImageCLEF plant identification task 2013. In: Proceedings of the 2nd ACM International Workshop on Multimedia Analysis for Ecological Data, pp. 23–28. ACM (2013)Google Scholar
  28. 28.
    Goëau, H., et al.: The LifeCLEF 2014 plant images identification task. In: CLEF Task Overview 2014, CLEF: Conference and Labs of the Evaluation Forum, Sheffield, United Kingdom, September 2014 (2014)Google Scholar
  29. 29.
    Hengl, T., et al.: SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12(2), e0169748 (2017)CrossRefGoogle Scholar
  30. 30.
    Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.: J. Roy. Meteorol. Soc. 25(15), 1965–1978 (2005)CrossRefGoogle Scholar
  31. 31.
    Homer, C., et al.: Completion of the 2011 national land cover database for the conterminous united states - representing a decade of land cover change information. Photogram. Eng. Rem. Sens. 81(5), 345–354 (2015)Google Scholar
  32. 32.
    Joly, A., et al.: Interactive plant identification based on social image data. Ecol. Inf. 23, 22–34 (2014)CrossRefGoogle Scholar
  33. 33.
    Joly, A., et al.: Overview of LifeCLEF 2018: a large-scale evaluation of species identification and recommendation algorithms in the era of AI. In: Bellot, P., et al. (eds.) CLEF 2018. LNCS, vol. 11018, pp. 247–266. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98932-7_24CrossRefGoogle Scholar
  34. 34.
    Joly, A., et al.: Overview of LifeCLEF 2019: identification of Amazonian plants, South & North American Birds, and Niche prediction. In: Crestani, F., et al. (eds.) CLEF 2019. Lecture Notes in Computer Science, vol. 11696, pp. 387–401. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-28577-7_29. https://hal.umontpellier.fr/hal-02281455CrossRefGoogle Scholar
  35. 35.
    Joly, A., et al.: LifeCLEF 2016: multimedia life species identification challenges. In: Fuhr, N., et al. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 286–310. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44564-9_26. https://hal.archives-ouvertes.fr/hal-01373781CrossRefGoogle Scholar
  36. 36.
    Joly, A., et al.: LifeCLEF 2017 lab overview: multimedia species identification challenges. In: Jones, G.J.F., et al. (eds.) CLEF 2017. LNCS, vol. 10456, pp. 255–274. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65813-1_24. https://hal.archives-ouvertes.fr/hal-01629191CrossRefGoogle Scholar
  37. 37.
    Joly, A., et al.: LifeCLEF 2014: multimedia life species identification challenges. In: Kanoulas, E., et al. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 229–249. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11382-1_20. https://hal.inria.fr/hal-01075770CrossRefGoogle Scholar
  38. 38.
    Joly, A., et al.: LifeCLEF 2015: multimedia life species identification challenges. In: Mothe, J., et al. (eds.) CLEF 2015. Lecture Notes in Computer Science, vol. 9283, pp. 462–483. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24027-5_46CrossRefGoogle Scholar
  39. 39.
    Kahl, S., et al.: Overview of BirdCLEF 2020: bird sound recognition in complex acoustic environments. In: CLEF Task Overview 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  40. 40.
    Kahl, S., Stöter, F.R., Glotin, H., Planqué, R., Vellinga, W.P., Joly, A.: Overview of BirdCLEF 2019: large-scale bird recognition in soundscapes. In: CLEF Task Overview 2019, CLEF: Conference and Labs of the Evaluation Forum, Lugano, Switzerland, September 2019 (2019)Google Scholar
  41. 41.
    Kahl, S., Wilhelm-Stein, T., Klinck, H., Kowerko, D., Eibl, M.: Recognizing birds from sound - the 2018 BirdCLEF baseline system. arXiv preprint arXiv:1804.07177 (2018)
  42. 42.
    Lee, D.J., Schoenberger, R.B., Shiozawa, D., Xu, X., Zhan, P.: Contour matching for a fish recognition and migration-monitoring system. In: Optics East. pp. 37–48. International Society for Optics and Photonics (2004)Google Scholar
  43. 43.
    Lee, S.H., Chan, C.S., Remagnino, P.: Multi-organ plant classification based on convolutional and recurrent neural networks. IEEE Trans. Image Process. 27(9), 4287–4301 (2018) MathSciNetCrossRefGoogle Scholar
  44. 44.
    Moorthy, G.K.: Impact of pretrained networks for snake species classification. In: CLEF Working Notes 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  45. 45.
    Motiian, S., Jones, Q., Iranmanesh, S., Doretto, G.: Few-shot adversarial domain adaptation. In: Advances in Neural Information Processing Systems, pp. 6670–6680 (2017)Google Scholar
  46. 46.
    Krishna, N.H., Ram Kaushik, R., R.M.: Plant species identification using transfer learning - PlantCLEF 2020. In: CLEF Working Notes 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  47. 47.
    NIPS International Conference: Proceedings of Neural Information Processing Scaled for Bioacoustics, from Neurons to Big Data (2013). http://sabiod.org/nips4b
  48. 48.
    Picek, L., Ruiz De Castañeda, R., Durso, A.M., Sharada, P.M.: Overview of the SnakeCLEF 2020: automatic snake species identification challenge. In: CLEF Task Overview 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  49. 49.
    Picek, L., Sulc, M., Matas, J.: Recognition of the Amazonian flora by inception networks with test-time class prior estimation. In: CLEF Working Notes 2019, CLEF: Conference and Labs of the Evaluation Forum, Lugano, Switzerland, September 2019 (2019)Google Scholar
  50. 50.
    Roberts, D.R., et al.: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40(8), 913–929 (2017)CrossRefGoogle Scholar
  51. 51.
    Towsey, M., Planitz, B., Nantes, A., Wimmer, J., Roe, P.: A toolbox for animal call recognition. Bioacoustics 21(2), 107–125 (2012)CrossRefGoogle Scholar
  52. 52.
    Trifa, V.M., Kirschel, A.N., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a mexican rainforest using hidden markov models. J. Acoust. Soc. Am. 123, 2424 (2008)CrossRefGoogle Scholar
  53. 53.
    Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: CVPR (2018)Google Scholar
  54. 54.
    Villacis, J., Goëau, H., Bonnet, P., Mata-Montero, E., Joly, A.: Domain adaptation in the context of herbarium collections: a submission to PlantCLEF 2020. In: CLEF Working Notes 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar
  55. 55.
    Wäldchen, J., Mäder, P.: Machine learning for image based species identification. Methods Ecol. Evol. 9(11), 2216–2225 (2018)zbMATHCrossRefGoogle Scholar
  56. 56.
    Wäldchen, J., Rzanny, M., Seeland, M., Mäder, P.: Automated plant species identification–trends and future directions. PLoS Comput. Biol. 14(4), e1005993 (2018)CrossRefGoogle Scholar
  57. 57.
    Yu, X., Wang, J., Kays, R., Jansen, P.A., Wang, T., Huang, T.: Automated identification of animal species in camera trap images. EURASIP J. Image Video Process. 2013, 52 (2013)Google Scholar
  58. 58.
    Zhang, Y., Davison, B.D.: Adversarial consistent learning on partial domain adaptation of PlantCLEF 2020 challenge. In: CLEF Working Notes 2020, CLEF: Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 2020 (2020)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Inria, LIRMMMontpellierFrance
  2. 2.CIRAD, UMR AMAPMontpellierFrance
  3. 3.AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
  4. 4.Aix Marseille Univ, Université de Toulon, CNRS, LIS, DYNIMarseilleFrance
  5. 5.Xeno-canto FoundationThe HagueThe Netherlands
  6. 6.HES-SOSierreSwitzerland
  7. 7.Cornell Lab of OrnithologyCornell UniversityIthacaUSA
  8. 8.LIRMM, Université Paul Valéry, University of Montpellier, CNRSMontpellierFrance
  9. 9.Institute of Global Health, Department of Community Health and Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
  10. 10.CaltechPasadenaUSA
  11. 11.Department of Cybernetics, FAVUniversity of West BohemiaPilsenCzechia
  12. 12.CNRS, LECAGrenobleFrance
  13. 13.Department of Biological SciencesFlorida Gulf Coast UniversityFort MyersUSA

Personalised recommendations